
## Chapter 3 - Homework

- **3.1** HydroFluorocarbons ( $C_xH_yF_z$ ) are safer alternative refrigerants than are Chlorofluorocarbons ( $C_xCI_yF_z$ ), which are a major source of ozone depletion in the upper atmosphere. A certain fluorocarbon liquid has an enthalpy of vaporization,  $\Delta_{vap}H^o = 26.0$  kJ/mol. Calculate q, w,  $\Delta H$ , and  $\Delta U$  when 1.50 mol of the compound is vaporized at -23 °C and 750 torr.
- **3.2** Use Bond Enthalpies (below) to estimate the enthalpy change for the hydrogenation of 1,3-butadiene to form butane:  $C_4H_6(g)$ + 2  $H_2(g) \rightarrow C_4H_{10}(g)$



**3.3** The enthalpy of formation of ethylbenzene  $[C_6H_5(CH_2CH_3)]$  is -12.6 kJ/mol.

Calculate the enthalpy of combustion of ethylbenzene

**Note:**  $\Delta_f H^o(CO_2) = -393.5 \text{ kJ/mol}$ ,  $\Delta_f H^o(H_2O) = -285.8 \text{ kJ/mol}$ 

**3.4** Consider the formation of liquid methyl methanoate,  $CH_3C(O)OCH_3(I)$ , from the elements at 25 °C :  $3 C(s) + 3 H_2(g) + O_2(g) \rightarrow CH_3C(O)OCH_3(I)$ . For this reaction,  $\Delta H^\circ = \Delta_f H^\circ(CH_3C(O)OCH_3) = -442 \text{ kJ/mol}$ 

Calculate  $\Delta U^{\circ}$  for this reaction at 25 °C.

**3.5** The standard enthalpy of combustion of napthalene,  $C_{10}H_8$ , is -5157 kJ/mol. Calculate the enthalpy of formation of napthalene.

**Note:**  $\Delta_f H^o(CO_2) = -393.5 \text{ kJ/mol}$ ,  $\Delta_f H^o(H_2O) = -285.8 \text{ kJ/mol}$ 

**3.6** The complete combustion of fumaric acid, HOOCCH = CHCOOH(s)  $[C_4H_4O_4]$ , in a (constant volume) bomb calorimeter released 1333 kJ per mole of fumaric acid. The reaction is: HOOCCH=CHCOOH(s) + 3 O<sub>2</sub>(g)  $\rightarrow$  4 CO<sub>2</sub>(g) + 2 H<sub>2</sub>O(I)

Calculate:

- (a) The internal energy of combustion of fumaric acid at 25 °C.
- (b) The enthalpy of combustion of fumaric acid at 25 °C.
- (c) The enthalpy of formation of fumaric acid at 25 °C.

**Note:**  $\Delta_f H^o(CO_2) = -393.5 \text{ kJ/mol}$ ,  $\Delta_f H^o(H_2O) = -285.8 \text{ kJ/mol}$ 

- 3.7 Classify as endothermic or exothermic:
  (a) a combustion reaction in which the enthalpy of combustion is 2020 kJ/mol
  - (b) a solution process for which  $\Delta_{soln} = +4.0 \text{ kJ/mol}$
  - (c) vaporization
  - (d) fusion
  - (e) sublimation
- **3.8** Calculate the standard enthalpy of formation of N<sub>2</sub>O<sub>5</sub> from the following data:

**Hint:** Start by writing the equation representing the formation of 1 mole of  $N_2O_5$  from the elements in their standard states.

- (1)  $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$   $\Delta \text{H}_1 = -114.1 \text{ kJ}$
- (2)  $4 \text{ NO}_2 + \text{O}_2 \rightarrow 2 \text{ N}_2\text{O}_5 \quad \Delta \text{H}_2 = -110.2 \text{ kJ}$
- (3)  $N_2 + O_2 \rightarrow 2 \text{ NO}$   $\Delta H_3 = +180.5 \text{ kJ}$
- **3.9** From the following enthalpies of reaction,

 $N_2 + O_2 \rightarrow 2NO \quad \Delta H = +180.7 \text{ kJ}$ 

 $4N_2 + 2O_2 \rightarrow 4N_2O\Delta H = +326.2 \text{ kJ}$ 

Calculate  $\Delta H$  for the reaction,  $2N_2O + O_2 \rightarrow 4NO$ .

**3.10** Use the enthalpy of formation data below to calculate the Fuel Value  $C_6H_6(I)$ , in kJ/g

## $\textbf{Compound} \qquad \Delta_{f}\textbf{H}^{o}$

- **3.11** The Dietary Value of glycine, C<sub>2</sub>H<sub>5</sub>NO<sub>2</sub>(s) [M=75 g/mol], is 13.0 kJ/g. Calculate the enthalpy of combustion of glycine, in kJ/mol.
- **3.12** When 210. grams of 1-propanol [CH<sub>3</sub>(OH)CH<sub>2</sub>CH<sub>3</sub>, M = 60. g/mol] is combusted  $O_2(g)$  to form  $CO_2(g) + H_2O(I)$ , the heat involved is  $q = \Delta H = -7,070$  kJ Calculate the Fuel Value (FV) of 1-propanol, in kJ/g.