Chapter 4 - Homework

4.1 Suppose you put a cube of ice of mass 100 g into a glass of water at $0^{\circ} \mathrm{C}$. When the ice melts, 33 . kJ of energy is absorbed from the surroundings as heat. What is the change of entrop of:
(a) the sample (the ice)
(b) the surroundings (the glass of water)
4.2 A sample of aluminum [$\mathrm{M}=27$] of mass 1.25 kg is cooled at constant pressure from $27^{\circ} \mathrm{C}$ to $-13^{\circ} \mathrm{C}$. Calculate the energy which must be removed as heat and the change in entropy of the sample. Note: The constant pressure molar heat capacity of aluminum is $24.35 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
4.3 A sample of $\mathrm{CO}_{2}(\mathrm{~g})[\mathrm{M}=44]$ occupies $15 . \mathrm{L}$ at $-23^{\circ} \mathrm{C}$ and 1.00 atm is compressed isothermally. To what volume must the gas be compressed to reduce its entropy by $10.0 \mathrm{~J} / \mathrm{K}$?
4.4 Whenever a gas expands, the gas undergoes an increase in entropy. A sample of $\mathrm{CH}_{4}(\mathrm{~g})[\mathrm{M}=16]$ of mass $25 . \mathrm{g}$ at $-23^{\circ} \mathrm{C}$ and 185 kPa expands isothermally until the pressure is 2.5 kPa .
Calculate the entropy change when the gas expands (a) reversibly, (b) irreversibly.
4.5 Calculate the change in molar entropy when an 80 g sample of $\operatorname{argon}[\mathrm{M}=40]$ is compressed from 2.0 L to $500 \mathrm{~cm}^{3}$ and simultaneously heated from 300 K to 400 K .
Note: The constant volume molar heat capacity is $\mathrm{C}_{\mathrm{v}, \mathrm{m}}=12.5$ J/mol
4.6 The enthalpy of vaporizaton of trichloromethane, CHCl_{3}, is 29.4 $\mathrm{kJ} / \mathrm{mol}$ at its normal boiling point, $62^{\circ} \mathrm{C}$.
(a) Calculate the entropy of vaporization of trichloromethane at its normal boiling point.
(b) What is the entropy change of the surroundings?
4.7 Calculate the standard reaction entropy (at 298 K) of the following two reactions:
(a) $2 \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})$
(b) $2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{AgBr}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$

Molar Entropies

Compound	\mathbf{S}^{0}
$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})$	$250.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$\mathrm{O}_{2}(\mathrm{~g})$	205.1
$\mathrm{CH}_{3} \mathrm{COOH}$	159.8
$\mathrm{AgCl}^{2}(\mathrm{~s})$	96.2
$\mathrm{Br}_{2}(\mathrm{l})$	152.2
$\mathrm{AgBr}(\mathrm{s})$	107.1
$\mathrm{Cl}_{2}(\mathrm{~g})$	223.1

4.8 A quantity of 0.35 moles of a Perfect Gas at $16^{\circ} \mathrm{C}$ is expanded from 1.2 L to 7.4 L . Calculate $\mathrm{w}, \mathrm{q}, \Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}$ and $\Delta \mathrm{G}$ if the process is carried out: (a) isothermally and reversibly, and (b) isothermally and irreversibly against an external pressure of 1.0 bar.
4.9 Calculate $\Delta \mathrm{H}, \Delta \mathrm{U}$ and $\Delta \mathrm{S}$ when 1 mol of water undergoes the following process:

$$
\mathrm{H}_{2} \mathrm{O}\left(\text { liq, } 25^{\circ} \mathrm{C}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(\text { gas, } 100^{\circ} \mathrm{C}\right)
$$

The molar heat of vaporization of water at $100^{\circ} \mathrm{C}$ is $40.7 \mathrm{~kJ} / \mathrm{mol}$. The constant pressure molar heat capacity of water is $75.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
4.10 Use the data below to calculate $\Delta \mathrm{G}^{0}$ for the following reaction:

$$
\beta \text {-D-Glucose(s) }\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})\right] \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+2 \mathrm{CO}_{2}(\mathrm{~g})
$$

using: (a) Enthalpies of formation and standard entropies, and (b) Gibbs energies of formation.

Compound	$\Delta_{\mathbf{f}} \mathbf{H}^{\mathbf{o}}$	$\mathbf{S}^{\mathbf{o}}$	$\Delta_{\mathbf{G}} \mathbf{G}^{\mathbf{o}}$
β-D-Glucose(s)	$-1268.0 \mathrm{~kJ} / \mathrm{mol}$	$212.0 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$	$-910.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$	-277.7	160.7	-174.8
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	213.7	-394.4

4.11 As an approximation, one may assume that proteins exist in either the native or denatured state. The standard molar enthalpy and entropy for the denaturation of a certain protein are $512 \mathrm{~kJ} / \mathrm{mol}$ and $1600 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. At what temperature does the denaturation of this protein become spontaneous? Is the reaction spontaneous at temperatures above OR below this temperature?
4.12 The Enthalpy of Fusion of Benzene is $9.87 \mathrm{~kJ} / \mathrm{mol}$. The Entropy of Fusion of Benzene is $35.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ The normal melting point of benzene is $6^{\circ} \mathrm{C}$.
Calculate $\Delta \mathrm{G}$ for the melting of two moles of benzene at:
(a) $-25^{\circ} \mathrm{C}$, (b) $6{ }^{\circ} \mathrm{C}$, (c) $25^{\circ} \mathrm{C}$

In each case, indicate whether the process is spontaneous, non-spontaneous, at equilibrium.

