CHAPTER 10 THE RATES OF REACTIONS CHAPTER OUTLINE

HW: Questions are below. Solutions are in separate file on the course web site.

Sect.	Material
1.	Basic Concepts
2.	The Initial Rate Method
3.	Use of the Integrated Rate Equation: First Order Reactions
4.	Second Order Reactions
5.	Additional Reaction Orders
6.	Generalizations
7.	The Half-Life Method
8.	Radiocarbon Dating + Geological Dating (Rocks)
9.	Temperature Dependence of the Rate Constant

Chapter 10 Homework

- The rate law for a reaction is reported as: rate = k[A][B][C], with the Molar Concentrations in mol/L (M) and the time in seconds. What are the units of k?
- In a study of the alcohol dehydrogenase catalysed oxidation of ethanol, the Molar concentration decreased in the first-order reaction from 220 mmol/L to 56.0 mmol/L in 1.22×10^4 s. What is the rate constant of the reaction?
- In the study of a second-order gas phase reaction, it was found that the Molar concentration of a reactant fell from 220 mmol/L to 56. mmol/L in 1.22x10⁴ s. What is the rate constant for the reaction?
- 10.4 The reaction $2 A \rightarrow P$ has a second-order rate law with $k = 1.24 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$. Calculate the time required for the concentration of A to change from 0.260 mol/L to 0.026 mol/L.
- The Activation Energy for the decomposition of benzene diazonium chloride is 99.1 kJ/mol. At what temperature will the rate be 10% greater than its rate at 25 °C?
- The Activation Energy of the first-order decomposition of dinitrogen oxide into N_2 and O is 251 kJ/mol. The half-life of the reactant is 6.5×10^6 s at 455 °C. What will the half-life be at 550 °c?
- 10.7 The rate law for the reaction, $A + B \rightarrow Products$, is of the form, $r = k[A]^x[B]^y$. From the initial rate data for this reaction given below, determine the reaction orders, "x" and "y", and the rate constant, k (give units).

$[A_0]$	$[\mathbf{B_o}]$	$\mathbf{r_o}$
0.10 M	2.0 M	8.50 Ms ⁻¹
0.30	2.0	2.83
0.30	3.0	7.80

- 10.8 The rate of a reaction, $A \rightarrow \text{Products}$, is second order with respect to [A]; i.e. $d[A]/dt = -k[A]^2$. When the initial concentration is 0.60 M, it takes 45 seconds for the concentration to decrease to 0.30 M.
 - (a) Calculate the rate constant for this reaction.
 - (b) Calculate the concentration, [A], 70 seconds after the start of the reaction.
 - (c) Calculate the time it takes for [A] to decrease from 0.60 M to 0.15 M.
- 10.9 The natural abundance of 14 C in living matter is 1.1×10^{-12} mol %. Radiochemical analysis of an object obtained in an archaeological excavation revealed to the 14 C isotopic abundance to be 7.2×10^{-13} mol %. Calculate the age of the object $(t_{1/2}[^{14}C] = 5730$ years).

10.10 The half-life for the decay of ${}^{40}K(sol)$ to ${}^{40}Ar(g)$ is 1.25 billion years.

(b) If a rock is 3.2 billion years old, the ratio, $[^{40}Ar]/[^{40}K]$, is:

(i) 0.75

(ii) 2.85

(iii) 4.90

(iv) 7.25

(b) If the ratio, $[^{40}K]/[^{40}Ar] = 0.75$, for a rock, the age of the rock is:

(i) 0.90 by

(ii) 1.50 by

(iii) 2.45 by

(iv) 4.50 by

10.11 The reaction, $A \rightarrow Products$, is of order "x" with respect to [A]; i.e. $d[A]/dt = -k[A]^x$. When $[A_o] = 0.90$ M, the half-life is 150 seconds. When $[A_o] = 0.30$ M, the half-life is 260 seconds. Calculate the order of the reaction, x.

- **10.12** The rate constant for a first order reaction is 1.5×10^{-3} s⁻¹ at 40 °C and 8.6×10^{-2} s⁻¹ at 80 °C.
 - (a) Calculate the Arrhenius parameters, A and E_a, for this reaction.
 - (b) Calculate the rate constant of this reaction at 130 °C.
 - (c) Calculate the temperature at which the half-life of this reaction is 200 s.
- 10.13 The rate constant for a first order reaction was measured as a function of temperature, and the Arrhenius plot (ln(k) vs. 1000/T) is shown below.

Analysis of the graph shows that the Slope = 5000 K and Intercept = +19.0

Note: Determination of the slope and intercept is given in the solution. However, you will not be asked to perform the graphical analysis on a test.

Determine the Activation Energy, Ea, and Pre-Exponential Factor, A, for this reaction.

