CHAPTER 10
 THE RATES OF REACTIONS CHAPTER OUTLINE

HW: Questions are below. Solutions are in separate file on the course web site.

Sect. Material

1. Basic Concepts
2. The Initial Rate Method
3. Use of the Integrated Rate Equation: First Order Reactions
4. Second Order Reactions
5. Additional Reaction Orders
6. Generalizations
7. The Half-Life Method
8. Radiocarbon Dating + Geological Dating (Rocks)
9. Temperature Dependence of the Rate Constant

Chapter 10 Homework

10.1 The rate law for a reaction is reported as: rate $=k[A][B][C]$, with the Molar Concentrations in $\mathrm{mol} / \mathrm{L}(\mathrm{M})$ and the time in seconds. What are the units of k ?
10.2 In a study of the alcohol dehydrogenase catalysed oxidation of ethanol, the Molar concentration decreased in the first-order reaction from $220 \mathrm{mmol} / \mathrm{L}$ to $56.0 \mathrm{mmol} / \mathrm{L}$ in $1.22 \times 10^{4} \mathrm{~s}$. What is the rate constant of the reaction?
10.3 In the study of a second-order gas phase reaction, it was found that the Molar concentration of a reactant fell from $220 \mathrm{mmol} / \mathrm{L}$ to $56 \mathrm{mmol} / \mathrm{L}$ in $1.22 \times 10^{4} \mathrm{~s}$. What is the rate constant for the reaction?
10.4 The reaction $2 \mathrm{~A} \rightarrow \mathrm{P}$ has a second-order rate law with $\mathrm{k}=1.24 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1 .}$. Calculate the time required for the concentration of A to change from $0.260 \mathrm{~mol} / \mathrm{L}$ to $0.026 \mathrm{~mol} / \mathrm{L}$.
10.5 The Activation Energy for the decomposition of benzene diazonium chloride is $99.1 \mathrm{~kJ} / \mathrm{mol}$. At what temperature will the rate be 10% greater than its rate at $25^{\circ} \mathrm{C}$?
10.6 The Activation Energy of the first-order decomposition of dinitrogen oxide into N_{2} and O is $251 \mathrm{~kJ} / \mathrm{mol}$. The half-life of the reactant is $6.5 \times 10^{6} \mathrm{~s}$ at $455^{\circ} \mathrm{C}$. What will the half-life be at $550{ }^{\circ} \mathrm{C}$?
10.7 The rate law for the reaction, $A+B \rightarrow$ Products, is of the form, $r=k[A]^{x}[B]^{y}$. From the initial rate data for this reaction given below, determine the reaction orders, " x " and " y ", and the rate constant, k (give units).

$\left[\mathbf{A}_{\mathbf{0}}\right]$	$\left[\mathbf{B}_{\mathbf{0}}\right]$	$\mathbf{r}_{\mathbf{0}}$
0.10 M	2.0 M	$8.50 \mathrm{Ms}^{-1}$
0.30	2.0	2.83
0.30	3.0	7.80

10.8 The rate of a reaction, $\mathrm{A} \rightarrow$ Products, is second order with respect to [A]; i.e. d[A]/dt $=$ $\mathrm{k}[\mathrm{A}]^{2}$. When the initial concentration is 0.60 M , it takes 45 seconds for the concentration to decrease to 0.30 M .
(a) Calculate the rate constant for this reaction.
(b) Calculate the concentration, [A], 70 seconds after the start of the reaction.
(c) Calculate the time it takes for [A] to decrease from 0.60 M to 0.15 M .
10.9 The natural abundance of ${ }^{14} \mathrm{C}$ in living matter is $1.1 \times 10^{-12} \mathrm{~mol} \%$. Radiochemical analysis of an object obtained in an archaeological excavation revealed to the ${ }^{14} \mathrm{C}$ isotopic abundance to be $7.2 \times 10^{-13} \mathrm{~mol} \%$. Calculate the age of the object ($\mathrm{t}_{1 / 2}\left[{ }^{14} \mathrm{C}\right]=5730$ years).
10.10 The half-life for the decay of ${ }^{40} \mathrm{~K}($ sol $)$ to ${ }^{40} \mathrm{Ar}(\mathrm{g})$ is 1.25 billion years.
(b) If a rock is 3.2 billion years old, the ratio, $\left[{ }^{40} \mathrm{Ar}\right] /\left[{ }^{40} \mathrm{~K}\right]$, is:
(i) 0.75
(ii) 2.85
(iii) 4.90
(iv) 7.25
(b) If the ratio, $\left[{ }^{40} \mathrm{~K}\right] /\left[{ }^{40} \mathrm{Ar}\right]=0.75$, for a rock, the age of the rock is:
(i) 0.90 by
(ii) 1.50 by
(iii) 2.45 by
(iv) 4.50 by
10.11 The reaction, $A \rightarrow$ Products, is of order " x " with respect to [A]; i.e. $d[A] / d t=-k[A]^{x}$. When $\left[\mathrm{A}_{0}\right]=0.90 \mathrm{M}$, the half-life is 150 seconds. When $\left[\mathrm{A}_{0}\right]=0.30 \mathrm{M}$, the half-life is 260 seconds. Calculate the order of the reaction, x.
10.12 The rate constant for a first order reaction is $1.5 \times 10^{-3} \mathrm{~s}^{-1}$ at $40^{\circ} \mathrm{C}$ and $8.6 \times 10^{-2} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$. (a) Calculate the Arrhenius parameters, A and E_{a}, for this reaction.
(b) Calculate the rate constant of this reaction at $130{ }^{\circ} \mathrm{C}$.
(c) Calculate the temperature at which the half-life of this reaction is 200 s .
10.13 The rate constant for a first order reaction was measured as a function of temperature, and the Arrhenius plot $(\ln (\mathrm{k})$ vs. 1000/T) is shown below.

Analysis of the graph shows that the Slope $=5000 \mathrm{~K}$ and Intercept $=+19.0$
Note: Determination of the slope and intercept is given in the solution. However, you will not be asked to perform the graphical analysis on a test.

Determine the Activation Energy, E_{a}, and Pre-Exponential Factor, A, for this reaction.

