CHAPTER 11 ACCOUNTING FOR THE RATE LAWS CHAPTER OUTLINE

HW: Questions are below. Solutions are in separate file on the course web site.

Sect. Material

1. Reaction Mechanisms
2. The Steady-State Approximation
3. Introduction to Enzyme Kinetics
4. The Michaelis-Menten Mechanism
5. Determination of Michaelis-Menten Parameters
6. Enzyme Inhibition
7. Competitive Inhibition
8. Uncompetitive Inhibition
9. Noncompetitive Inhibition
10. Enzyme Inhibition: Summary
11. Quantitative Aspects of Enzyme Inhibition

Chapter 11 Homework

11.1 The reaction $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$ is catalyzed by Br^{-}ions. If the mechanism is:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Br}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{BrO}^{-} \text {(slow) } \\
& \mathrm{BrO}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{Br}^{-} \text {(fast) }
\end{aligned}
$$

Give the predicted rate law.
11.2 The reaction mechanism involves an intermediate, A. The mechanism is

$$
\begin{aligned}
& A_{2} \stackrel{K}{\longleftrightarrow} A+A \text { Fast Equilibrium } \\
& A+B \xrightarrow{k} P
\end{aligned} \text { SlowRDS }
$$

What is the rate law for the formation of P ?
11.3 The reaction, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{P}$ (P is the product), proceeds via a rapid pre-equilibrium (with equilibrium constant, K) followed by a slow rate determining step (with rate constant, k_{2}) as shown below:

$$
\begin{array}{rl}
2 \mathrm{~A} & \mathrm{~K} \\
=\mathrm{A}_{2} \text { (fast pre-equilbrium) } \\
\mathrm{A}_{2}+\mathrm{B} & \xrightarrow{\mathrm{k}_{2}} \text { Products (slow) }
\end{array}
$$

Develop an expression for the rate of formation of Products as a function of [A], [B], K and k_{2}.
11.4 The following mechanism has been proposed for the decomposition of ozone in the atmosphere.

$$
\begin{gathered}
\stackrel{\mathrm{k}_{1}}{=} \mathrm{O}_{3}+\mathrm{O} \\
\mathrm{k}^{2}-1 \\
\\
\mathrm{~K} \mathrm{k}_{2} \\
\mathrm{O}+\mathrm{O}_{3} \xrightarrow{\rightarrow} \mathrm{O}_{2}+\mathrm{O}_{2}
\end{gathered}
$$

Use the steady-state approximation on [O] to develop an expression for the rate of the reaction, $-\mathrm{d}\left[\mathrm{O}_{3}\right] / \mathrm{dt}$.

Show that if the k_{2} step is slow, then the rate is second-order in $\left[\mathrm{O}_{3}\right]$ and of order -1 in $\left[\mathrm{O}_{2}\right]$.
11.5 The condensation reaction of acetone (HA) in aqueous solution is catalyzed by a base (B), that reacts reversibly with acetone to form the carbanion (A^{-}). The carbanion then reacts with an acetone to form the product. The Mechanism is:

$$
\begin{gathered}
k_{1} \\
A H+B \rightarrow B H^{+}+A^{-} \\
k_{2} \\
A^{-}+B H^{+} \rightarrow A H+B \\
k_{3} \\
A^{-}+A H \rightarrow \text { Revermation of Carbanion }
\end{gathered}
$$

Use the steady-state approximation on the intermediate, [A^{-}], to derive the rate equation for the formation of product.
11.6 The reaction, $\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{P}$ (P is the product) proceeds by the following mechanism.

$$
\begin{gathered}
\mathrm{A}+\mathrm{B} \\
\\
\\
\mathrm{k}_{1} \\
\\
\mathrm{k}+\mathrm{I} \\
\mathrm{I}+\mathrm{C} \\
\mathrm{k}_{2} \\
\rightarrow
\end{gathered}
$$

"I " is an intermediate present in steady-state concentration. Use the steady-state approximation on [I] to develop an expression for the rate of formation of P as a function of [A], [B], [C], $\mathrm{k}_{1}, \mathrm{k}_{-1}$ and k_{2}.
11.7 Analyze of the enzyme-catalyzed conversion of a substrate to form product at $25^{\circ} \mathrm{C}$ yields a Michaelis Constant of $0.045 \mathrm{~mol} / \mathrm{L}$.

The rate of the reaction is $1.15 \mathrm{mM} / \mathrm{s}$ (milliMolar/s) when the substrate concentration is $0.110 \mathrm{~mol} / \mathrm{L}$

What is the maximum velocity, V_{m}, for this reaction?
11.8 The hydrolysis of the substrate, N -glutaryl-L-phenylalanine-p-nitroanilide [GPNA], to p-nitroaniline and N -glutaryl-L-phenylanine is catalyzed by α-chymotrypsin. When $[\mathrm{E}]_{0}=4.0 \times 10^{-6} \mathrm{M}$, it is found that $\mathrm{v}_{0}=3.7 \times 10^{-8} \mathrm{M} / \mathrm{s}$ when $[\mathrm{S}]=2.5 \times 10^{-4} \mathrm{M}$ and $\mathrm{V}_{0}=9.8 \times 10^{-8} \mathrm{M} / \mathrm{s}$ when $[\mathrm{S}]=1.0 \times 10^{-3} \mathrm{M}$.
Determine the slope and intercept of the Lineweaver-Burk plot and, from these, K_{M}, V_{m}, and k_{2} for this reaction.
11.9 An enzyme has the Michaelis-Menten parameters, $\mathrm{K}_{\mathrm{M}}=2.8 \times 10^{-5} \mathrm{M}$ and $\mathrm{V}_{\mathrm{m}}=53 \mu \mathrm{M} / \mathrm{min}$. For $[\mathrm{S}]=7.5 \times 10^{-5} \mathrm{M}$ and $[\mathrm{I}]=4.8 \times 10^{-4} \mathrm{M}$, and $\mathrm{K}_{\mathrm{I}}=1.7 \times 10^{-4} \mathrm{M}$, calculate the initial rate $\left[\left(\mathrm{v}_{\mathrm{o}}\right)_{\mathrm{inh}}\right.$] and the percent inhibition [i\%] for (a) competitive inhibition, (b) uncompetitive inhibition, and (c) nonncompetitive inhibition.
11.10 An enzyme-catalyzed reaction with $\mathrm{K}_{\mathrm{M}}=2.7 \times 10^{-3} \mathrm{M}$ is inhibited by a competitive inhibitor ($\mathrm{K}_{\mathrm{I}}=3.1 \times 10^{-5} \mathrm{M}$). When the substrate concentration is $3.6 \times 10^{-4} \mathrm{M}$, what inhibitor concentration, [I], is required to get 65% inhibition.
11.11 For an enzyme-catalyzed reaction, v_{o} was measured as a function of [S], and the Lineweaver-Burk plot ($1 / \mathrm{v}_{\mathrm{o}}$ vs. $1 /[\mathrm{S}]$) below was obtained.

Analysis of the graph shows that the Slope $=0.0133 \mathrm{~s}$ and Intercept $=0.0334 \mathrm{~s} / \mathrm{mM}$
Note: Determination of the slope and intercept is given in the solution. However, you will not be asked to perform the graphical analysis on a test.

Determine the maximum velocity, Vm, and the Michaelis Constant, K_{M}, for this reaction.

