CHAPTER 2
 THERMODYNAMICS: THE FIRST LAW CHAPTER OUTLINE

HW: Questions are below. Solutions are in separate file on the course web site.

Sect. Material

1. Definitions + Heat and Work
2. Internal Energy and the First Law of Thermodynamics
3. Mathematical Preliminaries: Logarithms and Integral Calculus
4. Pressure-Volume Work
5. Het Capacity
6. Constant Volume Processes: Heat and Internal Energy (U)
7. Constant Pressure Processes: Heat and Enthalpy (H)
8. Differential Scanning Calorimetry
9. The Temperature Dependence of U and H
10. Perfect Gas Expansions and Compressions

Chapter 2 - Homework

2.1 A sample of methane $\left[\mathrm{CH}_{4}, \mathrm{M}=16\right]$ of mass 4.50 g occupies 12.7 L at $37^{\circ} \mathrm{C}$.
(a) Calculate the work involved when the gas expands isothermally against a constant external pressure of 30.0 kPa to 16.0 L
(b) Calculate the work involved if the same expansion occurred isothermally and reversibly.
2.2 A strip of magnesium metal [$\mathrm{M}=24.3$] of mass 12.5 g is dropped into a beaker of dilute Hydrochloric acid $[\mathrm{HCl}]$. Given that magnesium is the limiting reactant, calculate the work involved as a result of the reaction. The atmospheric pressure is 1.00 bar, and the temperature is $20.2^{\circ} \mathrm{C}$
2.3 The molar heat capacity of water $[\mathrm{M}=18]$ is $75.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. Calculate the heat involved to heat 250 g of water from $25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
2.4 When 229 J of energy is supplied as heat to 3.00 mol of $\operatorname{Ar}(\mathrm{g})$ at constant pressure, the temperature of the sample increases by $2.55^{\circ} \mathrm{C}$. Calculate the constant volume and constant pressure molar heat capacities of $\operatorname{Ar}(\mathrm{g})$.
2.5 When $3.0 \mathrm{~mol} \mathrm{O}_{2}(\mathrm{~g})$ is heated at a constant pressure of 3.25 atm , the temperature increases from 260 K to 285 K . Given that the constant pressure molar heat capacity of $\mathrm{O}_{2}(\mathrm{~g})$ is $29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$, calculate $\mathrm{q}, \Delta \mathrm{H}$ and $\Delta \mathrm{U}$.
2.6 The constant pressure molar heat capacity of water vapor [M=18] is $33.6 \mathrm{~J} / \mathrm{mol}-$ K . Calculate the final temperature if 2.80 kJ of heat is added at constant pressure to 45 grams of water vapor initially at $150^{\circ} \mathrm{C}$ and 1.0 bar.
2.7 Predict whether $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ are positive, zero or negative for:
(a) condensation of water vapor to liquid water at $100^{\circ} \mathrm{C}$.
(b) melting of solid benzene at its freezing point, $8^{\circ} \mathrm{C}$.
(c) reversible isothermal compression of a perfect gas.
(d) reversible adiabatic expansion of a perfect gas.

Note: HW \#2.8-\#2.12: All 5 questions deal with calculating $q, w, \Delta U$ and ΔH for processes beginning with 50 grams of $\mathrm{O}_{2}(\mathrm{~g})$ initially at $50^{\circ} \mathrm{C}$.
2.8 Calculate q, w, $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ when 50 grams of $\mathrm{O}_{2}(\mathrm{~g})[\mathrm{M}=32]$ is compressed isothermally and reversibly from 1 bar to 20 bar at $50^{\circ} \mathrm{C}$.
2.9 Calculate q, w, $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ when 50 grams of $\mathrm{O}_{2}(\mathrm{~g})[\mathrm{M}=32]$ is compressed irreversibly from 1 bar to 20 bar at $50^{\circ} \mathrm{C}$ by applying an external pressure of 20 bar.
2.10 Calculate $q, w, \Delta U$ and ΔH when 50 grams of $\mathrm{O}_{2}(\mathrm{~g})[\mathrm{M}=32]$ is heated at a constant pressure of 1 bar from $50^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. Info: The constant volume heat capacity of O_{2} is $21.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.
2.11 Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ when 50 grams of $\mathrm{O}_{2}(\mathrm{~g})[\mathrm{M}=32]$ is heated at a constant volume of 45 L from $50^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$.
2.12 Calculate $q, w, \Delta U$ and ΔH when 50 grams of $\mathrm{O}_{2}(\mathrm{~g})[\mathrm{M}=32]$ initially at a pressure of 1 bar and volume of 42 L is compressed reversibly and adiabatically to a pressure of 5 bar and volume of 16 L .

