CHAPTER 3 THERMOCHEMISTRY CHAPTER OUTLINE

HW: Questions are below. Solutions are in separate file on the course web site.

Sect. Material

- 1. Conversion between ΔU and ΔH
- 2. Phase Transitions
- 3. Bond Enthalpies
- 4. Enthalpies of Combustion
- 5. Thermochemical Rules
- 6. Hess's Law
- 7, Enthalpy of Formation
- 8. Fuel Value
- 9. Food Metabolism
- 10. Temerature Dependence of Reaction EnthalpiesNote: This section is FYI only. You will not be tested on it

Chapter 3 - Homework

- **3.1** HydroFluorocarbons ($C_xH_yF_z$) are safer alternative refrigerants than are Chlorofluorocarbons ($C_xCl_yF_z$), which are a major source of ozone depletion in the upper atmosphere. A certain fluorocarbon liquid has an enthalpy of vaporization, $\Delta_{vap}H^o = 26.0 \text{ kJ/mol.}$ Calculate q, w, ΔH , and ΔU when 1.50 mol of the compound is vaporized at -23 °C and 750 torr.
- **3.2** Use Bond Enthalpies (below) to estimate the enthalpy change for the hydrogenation of 1,3-butadiene to form butane: $C_4H_6(g)$ + 2 H₂(g) \rightarrow C₄H₁₀(g)

Bond	BE	
H-H	436 kJ/mol	n-butane: н—ċ́—ċ́—ċ́—
C-H	412	
C-C C=C	348	
C=C	612	
		1,3-butadiene:
		, н

3.3 The enthalpy of formation of ethylbenzene $[C_6H_5(CH_2CH_3)]$ is -12.6 kJ/mol. Calculate the enthalpy of combustion of ethylbenzene

Note: $\Delta_{f}H^{o}(CO_{2}) = -393.5 \text{ kJ/mol}$, $\Delta_{f}H^{o}(H_{2}O) = -285.8 \text{ kJ/mol}$

3.4 Consider the formation of liquid methyl methanoate, CH₃C(O)OCH₃(I), from the elements at 25 °C :

 $3 C(s) + 3 H_2(g) + O_2(g) \rightarrow CH_3C(O)OCH_3(I).$

For this reaction, $\Delta H^{\circ} = \Delta_{f} H^{\circ}(CH_{3}C(O)OCH_{3}) = -442 \text{ kJ/mol}$

Calculate ΔU° for this reaction at 25 °C.

3.5 The standard enthalpy of combustion of napthalene, C₁₀H₈, is -5157 kJ/mol. Calculate the enthalpy of formation of napthalene.

Note: $\Delta_f H^o(CO_2) = -393.5 \text{ kJ/mol}$, $\Delta_f H^o(H_2O) = -285.8 \text{ kJ/mol}$

- **3.6** The complete combustion of fumaric acid, HOOCCH = CHCOOH(s) [C₄H₄O₄], in a (constant volume) bomb calorimeter released 1333 kJ per mole of fumaric acid. The reaction is: HOOCCH=CHCOOH(s) + $3 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(I)$ Calculate:
 - (a) The internal energy of combustion of fumaric acid at 25 °C.
 - (b) The enthalpy of combustion of fumaric acid at 25 °C.
 - (c) The enthalpy of formation of fumaric acid at 25 °C.

Note: $\Delta_f H^o(CO_2) = -393.5 \text{ kJ/mol}$, $\Delta_f H^o(H_2O) = -285.8 \text{ kJ/mol}$

- **3.7** Classify as endothermic or exothermic:
 - (a) a combustion reaction in which the enthalpy of combustion is -2020 kJ/mol
 - (b) a solution process for which $\Delta_{soln} = +4.0 \text{ kJ/mol}$
 - (c) vaporization
 - (d) fusion
 - (e) sublimation
- **3.8** Calculate the standard enthalpy of formation of N_2O_5 from the following data: **Hint:** Start by writing the equation representing the formation of 1 mole of N_2O_5 from the elements in their standard states.

(1) $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$	∆H1 = -114.1 kJ
(2) $4 \text{ NO}_2 + \text{O}_2 \rightarrow 2 \text{ N}_2\text{O}_5$	$\Delta H_2 = -110.2 \text{ kJ}$
(3) $N_2 + O_2 \rightarrow 2 NO$	∆H ₃ = +180.5 kJ

3.9 From the following enthalpies of reaction,

 $N_2 + O_2 \rightarrow 2NO \qquad \Delta H = +180.7 \text{ kJ}$ $4N_2 + 2O_2 \rightarrow 4N_2O \qquad \Delta H = +326.2 \text{ kJ}$

Calculate ΔH for the reaction, $2N_2O + O_2 \rightarrow 4NO$.

3.10 Use the enthalpy of formation data below to calculate the Fuel Value $C_6H_6(I)$, in kJ/g

- **3.11** The Dietary Value of glycine, C₂H₅NO₂(s) [M=75 g/mol], is 13.0 kJ/g. Calculate the enthalpy of combustion of glycine, in kJ/mol.
- **3.12** When 210. grams of 1-propanol [CH₃(OH)CH₂CH₃, M = 60. g/mol] is combusted O₂(g) to form CO₂(g) + H₂O(I), the heat involved is $q = \Delta H = -7,070 \text{ kJ}$ Calculate the Fuel Value (FV) of 1-propanol, in kJ/g.