CHAPTER 8 CONSEQUENCES OF EQUILIBRIUM CHAPTER OUTLINE

HW: Questions are below. Solutions are in separate file on the course web site.

Material Sect. 1. Acids and Bases 2. Autoionization of Water 3. Strong Acids and Bases Dissociation of Weak Acids 4. Weak Base Equilibria 5. Salts in Water: Hydrolysis 6. 7. **Buffers** 8. Polyprotic Acids 9. Acid/Base Titrations 10. Amino Acids 11. **Proteins** 12. Solubility Equilibria

Chapter 8 Homework

- 8.1 Calculate the Molar concentrations of H⁺ ions and the pH of the following solutions:
 - (a) 25.0 cm³ of 0.144 M HCl(aq) was added to 25.0 cm³ of 0.125 M NaOH(aq)
 - (b) 25.0 cm³ of 0.15 M HCl(aq) was added to 35.0 cm³ of 0.15 M KOH(aq)
 - (c) $21.2 \text{ cm}^3 \text{ of } 0.22 \text{ M HNO}_3(\text{aq}) \text{ was added to } 10.0 \text{ cm}^3 \text{ of } 0.30 \text{ M NaOH}(\text{aq})$
- 8.2 (a) What is the pH of a solution when 8.4 g of potassium lactate, KAc (M = 98.1), is used to prepare 250 cm³ of solution. $Ka(HLac) = 1.8 \times 10^{-5}$.
 - (b) What is the pH of a solution when 3.75 g of ammonium bromide, NH₄Br (M = 97.9), is used to make 100 cm^3 of solution? Kb(NH₃) = 1.8×10^{-5} .
- **8.3** The acid dissociation constant of lactic acid is $K_a = 8.4 \times 10^{-4}$. Calculate the pH of the following solutions.
 - (a) 200 mL of 0.10 M lactic acid.
 - (b) 200 mL of 2.0 M sodium lactate
 - (c) 200 mL of 0.10 M lactic acid following the addition of 100 mL of 0.05 M NaOH.
- 8.4 The base equilibrium constant of aniline $[C_6H_5NH_2 = Anil]$ is $K_b = 4.3 \times 10^{-10}$. Calculate the pH of the following solutions.
 - (a) 400 mL of 0.05 M aniline
 - (b) 400 mL of 0.10 M anilinium chloride [AnilCl⁻].
 - (c) 400 mL of 0.05 M aniline following the addition of 100 mL of 0.15 M of HCl
- **8.5** For each of the solutions below, indicate whether the solution would be a buffer.
 - a) A solution prepared by adding 1 L of 0.50 M NaOH to 2 L of 0.5 M HAc (acetic acid)
 - b) A solution prepared by adding 1 L of 1.0 M HCl to 2 L of 0.80 M NaAc (sodium acetate)
 - c) A solution prepared by adding 1 L of 0.50 M H₂CO₃ to 1 L of 0.50 M K₂CO₃
 - d) A solution prepared by adding 1 L of 0.50 M HCl to 2 L of 0.50 M K_2CO_3
 - e) A solution prepared by adding 3 L of 0.50 M HCl to 2 L of 0.50 M K₂CO₃
 - f) A solution prepared by adding 5 L of 0.50 N HCl to 2 L of 0.50 M K₂CO₃

- 8.6 The following **independent** questions are on pH calculations in solutions of Arsenic Acid (H₃AsO₄) and its various anions. H₃AsO₄ is a triprotic acid with Acid Dissociation Constants: $K_a' = 6.0 \times 10^{-3}$, $K_a'' = 1.0 \times 10^{-7}$, $K_a'''' = 3.2 \times 10^{-12}$
 - a) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M H₃AsO₄ with 1.0 L of 0.80 M KOH.
 - b) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M H₃AsO₄ with 2.0 L of 0.80 M KOH.
 - c) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M Na₃AsO₄ with 1.0 L of 0.80 M HNO₃.
 - d) Calculate the pH of a solution prepared by mixing 3.0 L of 0.40 M Na₃AsO₄ with 2.0 L of 0.80 M HNO₃.
 - e) What is the pH of a solution in which the following ratio is $[HAsO_4^{2-}] / [H_2AsO_4^{-}] = 1.50$
 - f) What is the pH of a solution in which the following ratio is $[HAsO_4^{-2}]/[AsO_4^{-3}] = 2.50$
 - g) What value of the ratio, $[H_2AsO_4]/[H_3AsO_4]$, is required to prepare a buffer with pH = 2.60?
 - h) What value of the ratio, $[HAsO_4^{2-}]/[AsO_4^{3-}]$, is required to prepare a buffer with pH = 10.90?
- 8.7 The acid dissociation constant of formic acid [HCOOH] is $K_a = 1.8 \times 10^{-4}$. A solution is prepared with an initial concentration [HCOOH] = 0.5 M. Sufficient KOH is added to the solution to raise the pH to 4.25 What are the concentrations, [HCOOH] and [HCOOT] of the solution at this pH?
- 8.8 One initially has a solution containing 500 mL of 0.40 M benzoic acid $[K_a = 6.5 \times 10^{-5}]$.
 - (a) How many mL of 1.0 M NaOH are required to reach half-way to the equivalence point (stoichiometric point)? What is the pH of the solution at this point?
 - (b) How many mL of 1.0 M NaOH are required to reach the equivalence point (stoichiometric point)? What is the pH of the solution at this point?

- Alanine is an amino acid with $R = -CH_3$. Its pKa's are pKa'(α -COOH)=2.35 and pKa''(α -NH₃⁺)=9.69.
 - a) At what pH is the ratio $[Ala^+]/[Ala] = 0.25$?
 - b) What is the ratio $[Ala^{-}]/[Ala]$ at pH=10.5?
 - c) If one starts with a solution containing 0.8 M neutral [Ala], and the pH is lowered to 2.0, what are the concentrations of [Ala] and [Ala⁺]?
- **8.10** Lysine is an amino acid with $R = -(CH_2)_4NH_2$. Its pKa's are pKa'(α-COOH)=2.18, pKa''(α-NH₃+)=8.95 and pKa'''(ε-NH₃+)=10.53.

The structure of the fully protonated form is:

$$^{+}H_{3}N$$
 ^{-}C
 $^{-}CO_{2}H$
 $^{-}(CH_{2})_{4}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{-}$
 $^{$

- a) What is the pH and average charge after the addition of 0.5 equiv. of NaOH to the protonated form.
- b) What is the pH and average charge after the addition of 1.0 equiv. of NaOH to the protonated form?
- c) What is the isoelectric point, pI?
- d) How many equiv. of NaOH must be added to the protonated form to reach pH=10.53?
- e) What is the average charge after the addition of 2.5 equiv. of NaOH to the protonated form?
- **8.11** The solubility product (aka solubility constant) of MgF₂ is K_s =6.4x10⁻⁹.
 - (a) Calculate the solubility of MgF_2 in pure water.
 - (b) Calculate the solubility of MgF_2 in 0.1 M $MgCl_2(aq)$.
 - (c) Calculate the solubility of MgF₂ in 0.2 M KF(aq).