CHEM 5200 - Exam 1 - September 26, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kPa-L/mol-K

1 L-atm = 101 J

1 L-bar = 100 J

1 kPa-L = 1 J

1 bar = 100 kPa

1 atm = 760 torr

 $1 \text{ atm} = 1.013 \text{ bar} = 1.013 \times 10^5 \text{ Pa}$

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R/C_{V,m}} \qquad \text{or} \qquad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{C_{P,m}/C_{V,m}} = \left(\frac{V_1}{V_2}\right)^{\gamma} \qquad \qquad \gamma = \frac{C_{P,m}}{C_{v,m}}$$

CHEM 5200 - Exam 1 - September 26, 2017

Name Soly Years

(27) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer	(27)	MULTIPLE CHOICE [3 point	ts per question]	(Circle the ONE	correct answe
---	------	--------------------------	------------------	-----------------	---------------

1.	What are w and ΔU when 3. moles of a gas is compressed isothermally and reversibly from 30 L to 2 L at 50 °C?				
	(A) w= 0 and ΔU = +21.8 kJ (B) w= -21.8 kJ and ΔU =0				
	(C) w= +21.8 kJ and ΔU = -21.8 kJ (D) w=+21.8 kJ and ΔU = 0				
2.	When a gas is cooled at constant volume,				
	(A) $\Delta U < 0 \& w < 0$ (B) $\Delta U < 0 \& w > 0$ (C) $\Delta U > 0 \& w = 0$ (D) $\Delta U < 0 \& w = 0$				
3.	Solid Nickel reacts with gaseous carbon monoxide to form solid nickel tetracarbonyl according to the equation. Ni(sol) + 4 CO(gas) \rightarrow Ni(CO) ₄ (liq). What is the work involved when 3. moles of Ni(sol) react with CO(gas) to form Ni(CO) ₄ (liq) at 100 °C and 1 bar pressure?				
	(A) +12.4 kJ (B) $+37.2$ kJ (C) -12.4 kJ (D) -37.2 kJ				

- 4. The molar constant volume heat capacity of CO₂(g) is constant at C_{V,m} = 28.2 J/mol-K. You can assume that CO₂(g) is a Perfect Gas. When 4. moles of CO₂(g) is heated from 100 °C to 250 °C.
 - (A) $\Delta H = +11.9 \text{ kJ} \& \Delta U = +16.9 \text{ kJ}$
- (B) $\Delta H = +16.9 \text{ kJ} & \Delta U = +21.9 \text{ kJ}$
- (C) $\Delta H = +5.5 \text{ kJ} \& \Delta U = +4.2 \text{ kJ}$
- (D) $\Delta H = +21.9 \text{ kJ } \& \Delta U = +16.9 \text{ kJ}$
- 5. The **constant pressure** molar heat capacity of a Perfect Gas is: C_{p,m} = 21.0 J/mol-K. When a sample of this gas originally at a pressure of 2. bar and volume of 50. L is **compressed adiabatically and reversibly** to a final volume of 20. L. What is the approximate final pressure of the gas?
 - (A) 4.6 bar
- (B) 5.0 bar
- (C) 7.2 bar
- (D) 9.1 bar
- 6. For the reaction, $2 \text{ SO}_3(g) \rightarrow 2 \text{ SO}_2(g) + \text{O}_2(g)$, $\Delta H^o = +200 \text{ kJ}$. The Enthalpy of Formation of SO₃(g) is -397 kJ/mol. What is the Enthalpy of Formation of SO₂(g)?
 - (A) -297 kJ
- (B) +497 kJ
- (C) -497 kJ
- (D) +297 kJ
- 7. What is the work involved when five(5) moles of liquid chlorobenzene vaporizes to the gas at its boiling point, 131 °C?
 - (A) -16.8 kJ
- (B) +3.4 kJ
- (C) -3.4 kJ
- (D) +16.8 kJ

8. The thermal expansion coefficient of a substance is defined by:

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$
 Consider a hypothetical gas which follows the Equation of State:

$$pV = nRT^2$$

The thermal expansion coefficient of this hypothetical gas is given by:

$$(A) \ \frac{2nRT}{p}$$

$$(B) \frac{2}{T}$$

(C)
$$\frac{2}{p}$$

(D)
$$\frac{3}{T}$$

9, The internal pressure is defined by, $\pi_T = \left(\frac{\partial U}{\partial V}\right)_T$, and is a measure of attractive or

repulsive forces between molecules in real gases. Consider a gas in which **attractive** interactions between molecules predominate. When one mole of this gas is compressed isothermally from 1 bar pressure to 10 bar pressure:

(A)
$$\pi_T > 0$$
, $\Delta U > 0$
(C) $\pi_T > 0$, $\Delta U < 0$

(B)
$$\pi_T < 0$$
, $\Delta U > 0$

(D)
$$\pi_T < 0$$
, $\Delta U < 0$

FIVE(5) PROBLEMS on following pages:

NOTE: You Must show your work to receive credit.

(11) 1. Starting with the total differential for V(p,T), prove that:
$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{\alpha}{\kappa_{T}}$$
, where $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{D}$ and $\kappa_{T} = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T}$

You MUST show all steps to receive credit on this derivation. $V(p,T) = AVz(\frac{\partial V}{\partial p}) + \frac{\partial V}{\partial p} = \frac{\partial V}{\partial p} \frac{\partial V}{$

(14) 2.	From the following enthalpies of reaction,	
	(1) $6 C_3H_8(g) \rightarrow 6 C_3H_6(g) + 6 H_2(g)$	∆H°= +744 kJ
	(2) $3 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(I) \rightarrow 1 \text{ C}_3\text{H}_8(g) + 5 \text{ O}_2(g)$ (3) $2 \text{ H}_2(g) + 1 \text{ O}_2(g) \rightarrow 2 \text{ H}_2\text{O}(I)$	ΔH°= +2220 kJ ΔH°= -572 kJ
•	Calculate ΔH° for the reaction, 2 C ₃ H ₆ (g) + 9 O ₂ (g) \rightarrow	
//)	//	= 1.2-3 (24)
	2 G/8 +10 0 >6 con + 8AD	=-248 hT
		11/2 - 2 (nople
3/) 2	Mad - 2 R2 + C2	= 44440° NS
	(penne A)	-1(-572)
		572 AP
254	+ Xh + 263 /8 + 1002 1 3/hd	
Approxima	> 25/8 + 6 Con + 8/10 + 2/1 +02	
/20	(3 H+4902 -> 902 +6CO2+6A20	
	= AU, + AM2 + AM3	
SA	= -248 8/34440) 8572	
	- 4118 KT	

or con integrate with agen 20 65 [a=a-R]

J=2186 \$491R South -56h7/

The Enthalpy of Vaporization of Napthalene is 56.0 kJ/mol and the normal boiling (16) 3. point is 218 °C.

Calculation w, q, ΔU and ΔH (all in kJ) when four (4) moles of gaseous Napthalene are condensed to the liquid at 218 °C and 1 atm pressure. Nap (liq)

h Darl = 4rd (-58 hold)

ar-PSkin- y J= OPkg = MART = 4md (8-3/Then Vygik)

= +16,300 Tx L = (+16.3 /2)

Allz gow = -224/28 6/6,3 to - -207,7 2 [-208 hs]

Consider one mole of a gas which obeys the equation of state,
$$\left(p + \frac{A}{V^3}\right)V = RT \text{ with A} = 2.5 \text{ L}^3 \text{ atm}$$

It can be shown that the dependence of internal energy on volume is:

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right)_{V} - p$$

(14) 5.

Calculate the change in internal energy, ΔU (in in J) when one mole of this gas is expanded reversibly and isothermally from $V_1 = 0.50 L$ to $V_2 = 0.90 L$.

Notes: 1. $\Delta U \neq 0$ because this is NOT a Perfect Gas

2. 1 L-atm = 101 J
$$\frac{1}{2} \left(\frac{1}{2} \right) - \int \frac{d^2}{d^2} \cdot \frac{1}{2} \int \frac{d^2}$$

2. 1 L-atm = 101 J

$$(\frac{24}{30})_{1} = +(\frac{4}{30})_{1} - P = +(\frac{4}{30})_{2} - \frac{4}{30}_{3}$$

$$=\frac{4}{2}\left[\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right]=-\frac{2.523}{2}\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right]$$