CHEM 5200 - Exam 1 - September 26, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kPa-L/mol-K 1 L-atm = 101 J 1 L-bar = 100 J 1 kPa-L = 1 J 1 bar = 100 kPa 1 atm = 760 torr 1 atm = 1.013 bar = 1.013×10^5 Pa

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R_{C_{V,m}}} \quad \text{or} \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{C_{p,m}} C_{V,m} = \left(\frac{V_1}{V_2}\right)^{\gamma} \quad \gamma = \frac{C_{p,m}}{C_{v,m}}$$

CHEM 5200 - Exam 1 - September 26, 2017

Name_____

(27) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

- 1. What are w and ∆U when 3. moles of a gas is compressed isothermally and reversibly from 30 L to 2 L at 50 °C?
 - (A) w= 0 and ΔU = +21.8 kJ (B) w= -21.8 kJ and ΔU =0
 - (C) w= +21.8 kJ and ΔU = -21.8 kJ (D) w=+21.8 kJ and ΔU = 0
- 2. When a gas is cooled at constant volume,

(A) $\Delta U < 0 \& w < 0$ (B) $\Delta U < 0 \& w > 0$ (C) $\Delta U > 0 \& w = 0$ (D) $\Delta U < 0 \& w = 0$

- Solid Nickel reacts with gaseous carbon monoxide to form solid nickel tetracarbonyl according to the equation. Ni(sol) + 4 CO(gas) → Ni(CO)₄(liq). What is the work involved when 3. moles of Ni(sol) react with CO(gas) to form Ni(CO)₄(liq) at 100 °C and 1 bar pressure?
 - (A) +12.4 kJ (B) +37.2 kJ (C) -12.4 kJ (D) -37.2 kJ
- The molar constant volume heat capacity of CO₂(g) is constant at C_{V,m} = 28.2 J/mol-K. You can assume that CO₂(g) is a Perfect Gas. When 4. moles of CO₂(g) is heated from 100 °C to 250 °C,
 - (A) $\Delta H = +11.9 \text{ kJ} \& \Delta U = +16.9 \text{ kJ}$ (B) $\Delta H = +16.9 \text{ kJ} \& \Delta U = +21.9 \text{ kJ}$
 - (C) $\Delta H = +5.5 \text{ kJ } \& \Delta U = +4.2 \text{ kJ}$ (D) $\Delta H = +21.9 \text{ kJ } \& \Delta U = +16.9 \text{ kJ}$
- 5. The constant pressure molar heat capacity of a Perfect Gas is: C_{p,m} = 21.0 J/mol-K. When a sample of this gas originally at a pressure of 2. bar and volume of 50. L is compressed adiabatically and reversibly to a final volume of 20. L. What is the approximate final pressure of the gas?
 - (A) 4.6 bar (B) 5.0 bar (C) 7.2 bar (D) 9.1 bar
- 6. For the reaction, $2 \text{ SO}_3(g) \rightarrow 2 \text{ SO}_2(g) + O_2(g)$, $\Delta H^\circ = +200 \text{ kJ}$. The Enthalpy of Formation of SO₃(g) is -397 kJ/mol. What is the Enthalpy of Formation of SO₂(g)?
 - (A) -297 kJ (B) +497 kJ (C) -497 kJ (D) +297 kJ
- 7. What is the work involved when five(5) moles of liquid chlorobenzene vaporizes to the gas at its boiling point, 131 °C ?
 - (A) -16.8 kJ (B) +3.4 kJ (C) -3.4 kJ (D) +16.8 kJ

8. The thermal expansion coefficient of a substance is defined by:

 $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$ Consider a hypothetical gas which follows the Equation of State: $pV = nRT^2$

The thermal expansion coefficient of this hypothetical gas is given by:

- (A) $\frac{2nRT}{p}$ (B) $\frac{2}{T}$ (C) $\frac{2}{p}$ (D) $\frac{3}{T}$
- 9. The internal pressure is defined by, $\pi_T = \left(\frac{\partial U}{\partial V}\right)_T$, and is a measure of attractive or repulsive forces between molecules in real gases. Consider a gas in which

attractive interactions between molecules in real gases. Consider a gas in which is compressed isothermally from 1 bar pressure to 10 bar pressure:

(A) $\pi_{\rm T} > 0$, $\Delta U > 0$ (B) $\pi_{\rm T} < 0$, $\Delta U > 0$

(C)
$$\pi_{\rm T} > 0$$
, $\Delta U < 0$ (D) $\pi_{\rm T} < 0$, $\Delta U < 0$

FIVE(5) PROBLEMS on following pages:

NOTE: You Must show your work to receive credit.

(11) 1. Starting with the total differential for V(p,T), prove that: $\left(\frac{\partial p}{\partial T}\right)_V = \frac{\alpha}{\kappa_T}$,

where
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$
 and $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$

You MUST show all steps to receive credit on this derivation.

(14) 2. From the following enthalpies of reaction,

(1) $6 C_3 H_8(g) \rightarrow 6 C_3 H_6(g) + 6 H_2(g)$	∆H°= +744 kJ
(2) $3 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(I) \rightarrow 1 \text{ C}_3\text{H}_8(g) + 5 \text{ O}_2(g)$	∆Hº= +2220 kJ
(3) 2 H ₂ (g) + 1 O ₂ (g) \rightarrow 2 H ₂ O(l)	∆Hº= -572 kJ

Calculate ΔH° for the reaction, 2 C₃H₆(g) + 9 O₂(g) \rightarrow 6 CO₂(g) + 6 H₂O(l)

(16) 3. The Enthalpy of Vaporization of Napthalene is 56.0 kJ/mol and the normal boiling point is 218 °C.

Calculation w, q, ΔU and ΔH (all in kJ) when four (4) moles of gaseous Napthalene are condensed to the liquid at 218 °C and 1 atm pressure. Nap (gas) \rightarrow Nap (liq)

(18) 4. A Perfect Gas has a temperature dependent molar constant pressure heat capacity, $C_{p,m} = a + bT^3$ with a = 30 J/mol-K and b = 8x10⁻⁸ J/(mol-K⁴).

Two (2) moles of this gas, originally at a temperature,of 300 K and volume of 20. L is heated reversibly at **constant pressure** to a temperature of 800 K.

Calculate ΔH , $\Delta U,$ and w for this process (in kJ)

(14) 5. Consider one mole of a gas which obeys the equation of state,

$$\left(p + \frac{A}{V^3}\right)V = RT$$
 with A = 2.5 L³ atm

It can be shown that the dependence of internal energy on volume is:

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right)_{V} - p$$

Calculate the change in internal energy, ΔU (in in J) when one mole of this gas is expanded reversibly and isothermally from V₁ = 0.50 L to V₂ = 0.90 L.

Notes: 1. $\Delta U \neq 0$ because this is NOT a Perfect Gas 2. 1 L-atm = 101 J