CHEM 5200-Exam 1 - September 26, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

```
Constants and Conversion Factors:
R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kPa-L/mol-K
1 L-atm = 101 J
1 L-bar = 100 J
1 kPa-L = 1 J
1 bar = 100 kPa
1 atm = 760 torr
1 atm = 1.013 bar = 1.013\times105 Pa
```

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{v, m}} \quad \text { or } \quad \frac{p_{2}}{p_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{C_{p, m} / C_{v, m}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma} \quad \gamma=\frac{C_{p, m}}{C_{v, m}}
$$

Name

\qquad

(27) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. What are w and ΔU when 3 . moles of a gas is compressed isothermally and reversibly from 30 L to 2 L at $50^{\circ} \mathrm{C}$?
(A) $\mathrm{w}=0$ and $\Delta \mathrm{U}=+21.8 \mathrm{~kJ}$
(B) $\mathrm{w}=-21.8 \mathrm{~kJ}$ and $\Delta \mathrm{U}=0$
(C) $\mathrm{w}=+21.8 \mathrm{~kJ}$ and $\Delta \mathrm{U}=-21.8 \mathrm{~kJ}$
(D) $\mathrm{w}=+21.8 \mathrm{~kJ}$ and $\Delta \mathrm{U}=0$
2. When a gas is cooled at constant volume,
(A) $\Delta U<0 \& W<0$
(B) $\Delta U<0 \& w>0$
(C) $\Delta U>0 \& w=0$
(D) $\Delta U<0 \& w=0$
3. Solid Nickel reacts with gaseous carbon monoxide to form solid nickel tetracarbonyl according to the equation. $\mathrm{Ni}($ sol $)+4 \mathrm{CO}$ (gas) $\rightarrow \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{liq})$. What is the work involved when 3. moles of $\mathrm{Ni}(\mathrm{sol})$ react with $\mathrm{CO}($ gas $)$ to form $\mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{liq})$ at $100^{\circ} \mathrm{C}$ and 1 bar pressure?
(A) +12.4 kJ
(B) +37.2 kJ
(C) -12.4 kJ
(D) -37.2 kJ
4. The molar constant volume heat capacity of $\mathrm{CO}_{2}(\mathrm{~g})$ is constant at $\mathrm{C}_{\mathrm{V}, \mathrm{m}}=28.2 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. You can assume that $\mathrm{CO}_{2}(\mathrm{~g})$ is a Perfect Gas. When 4. moles of $\mathrm{CO}_{2}(\mathrm{~g})$ is heated from $100^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$,
(A) $\Delta \mathrm{H}=+11.9 \mathrm{~kJ} \& \Delta \mathrm{U}=+16.9 \mathrm{~kJ}$
(B) $\Delta \mathrm{H}=+16.9 \mathrm{~kJ} \& \Delta \mathrm{U}=+21.9 \mathrm{~kJ}$
(C) $\Delta \mathrm{H}=+5.5 \mathrm{~kJ} \& \Delta \mathrm{U}=+4.2 \mathrm{~kJ}$
(D) $\Delta \mathrm{H}=+21.9 \mathrm{~kJ} \& \Delta \mathrm{U}=+16.9 \mathrm{~kJ}$
5. The constant pressure molar heat capacity of a Perfect Gas is: $C_{p, m}=21.0 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. When a sample of this gas originally at a pressure of 2 . bar and volume of $50 . \mathrm{L}$ is compressed adiabatically and reversibly to a final volume of 20. L. What is the approximate final pressure of the gas?
(A) 4.6 bar
(B) 5.0 bar
(C) 7.2 bar
(D) 9.1 bar
6. For the reaction, $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}=+200 \mathrm{~kJ}$. The Enthalpy of Formation of $\mathrm{SO}_{3}(\mathrm{~g})$ is $-397 \mathrm{~kJ} / \mathrm{mol}$. What is the Enthalpy of Formation of $\mathrm{SO}_{2}(\mathrm{~g})$?
(A) -297 kJ
(B) +497 kJ
(C) -497 kJ
(D) +297 kJ
7. What is the work involved when five(5) moles of liquid chlorobenzene vaporizes to the gas at its boiling point, $131^{\circ} \mathrm{C}$?
(A) -16.8 kJ
(B) +3.4 kJ
(C) -3.4 kJ
(D) +16.8 kJ
8. The thermal expansion coefficient of a substance is defined by:

$$
\begin{aligned}
& \alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \text { Consider a hypothetical gas which follows the Equation of State: } \\
& p V=n R T^{2}
\end{aligned}
$$

The thermal expansion coefficient of this hypothetical gas is given by:
(A) $\frac{2 n R T}{p}$
(B) $\frac{2}{T}$
(C) $\frac{2}{p}$
(D) $\frac{3}{T}$

9, The internal pressure is defined by, $\pi_{T}=\left(\frac{\partial U}{\partial V}\right)_{T}$, and is a measure of attractive or repulsive forces between molecules in real gases. Consider a gas in which attractive interactions between molecules predominate. When one mole of this gas is compressed isothermally from 1 bar pressure to 10 bar pressure:
(A) $\pi_{\mathrm{T}}>0, \Delta \mathrm{U}>0$
(B) $\pi_{\mathrm{T}}<0, \Delta \mathrm{U}>0$
(C) $\pi_{\mathrm{T}}>0, \Delta \mathrm{U}<0$
(D) $\pi_{\mathrm{T}}<0, \Delta \mathrm{U}<0$

FIVE(5) PROBLEMS on following pages:

NOTE: You Must show your work to receive credit.
(11) 1. Starting with the total differential for $\mathrm{V}(\mathrm{p}, \mathrm{T})$, prove that: $\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{\alpha}{\kappa_{T}}$, where $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}$ and $\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}$

You MUST show all steps to receive credit on this derivation.
(14) 2. From the following enthalpies of reaction,
(1) $6 \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \rightarrow 6 \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})$
(2) $3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 1 \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=+2220 \mathrm{~kJ}$
(3) $2 \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}^{0}=-572 \mathrm{~kJ}$

Calculate $\Delta \mathrm{H}^{0}$ for the reaction, $2 \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(16) 3. The Enthalpy of Vaporization of Napthalene is $56.0 \mathrm{~kJ} / \mathrm{mol}$ and the normal boiling point is $218{ }^{\circ} \mathrm{C}$.

Calculation $\mathrm{w}, \mathrm{q}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ (all in kJ) when four (4) moles of gaseous Napthalene are condensed to the liquid at $218{ }^{\circ} \mathrm{C}$ and 1 atm pressure. Nap (gas) \rightarrow Nap (liq)
(18) 4. A Perfect Gas has a temperature dependent molar constant pressure heat capacity, $C_{p, m}=a+b T^{3}$ with $\mathrm{a}=30 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $\mathrm{b}=8 \times 10^{-8} \mathrm{~J} /\left(\mathrm{mol}-\mathrm{K}^{4}\right)$.

Two (2) moles of this gas, originally at a temperature, of 300 K and volume of 20 . L is heated reversibly at constant pressure to a temperature of 800 K .

Calculate $\Delta \mathrm{H}, \Delta \mathrm{U}$, and w for this process (in kJ)
(14) 5. Consider one mole of a gas which obeys the equation of state,

$$
\left(p+\frac{A}{V^{3}}\right) V=R T \text { with } A=2.5 \mathrm{~L}^{3} \mathrm{~atm}
$$

It can be shown that the dependence of internal energy on volume is:

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p
$$

Calculate the change in internal energy, $\Delta \mathrm{U}$ (in in J) when one mole of this gas is expanded reversibly and isothermally from $\mathrm{V}_{1}=0.50 \mathrm{~L}$ to $\mathrm{V}_{2}=0.90 \mathrm{~L}$.
Notes: 1. $\Delta \mathrm{U} \neq 0$ because this is NOT a Perfect Gas
2. $1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J}$

