CHEM 5200 - Exam 1 - September 20, 2018

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kPa-L/mol-K

1 L-atm = 101 J

1 L-bar = 100 J

1 kPa-L = 1 J

1 bar = 100 kPa

1 bar = 750 torr

1 atm = 760 torr

 $1 \text{ atm} = 1.013 \text{ bar} = 1.013 \text{x} 10^5 \text{ Pa}$

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R_{C_{V,m}}} \quad \text{or} \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{C_{P,m}} = \left(\frac{V_1}{V_2}\right)^{\gamma} \quad \gamma = \frac{C_{P,m}}{C_{V,m}}$$

CHEM 5200 - Exam 1 - September 20, 2018

	0	11	0	
Name	20	4800	NS	:

(27)	MULTIPLE CHOICE	[3 naints i	ner auestionl	(Circle the	ONE co	rrect answerl
\ <i>~' ,</i>	MOLI II LL CI IOICL	լս բայուց լ	hei daesiioiil	Cucie nie	OIAE CO	medianswer)

1. What are q and ΔU when 1.5 moles of a perfect gas is expanded reversibly and isothermally from 3.0 L to 20 L at 30 °C?

(A)
$$q = +7.2 \text{ kJ and } \Delta U = 0$$

(B) q = +7.2 kJ and $\Delta U = -7.2 \text{ kJ}$

(C)
$$q = 0$$
 and $\Delta U = -7.2$ kJ

(D) $q = -7.2 \text{ kJ and } \Delta U = 0$

2. The molar constant volume heat capacity of O₂(g) is constant at $C_{V,m} = 24.5 \text{ J/mol-K}$. You can assume that $O_2(q)$ is a Perfect Gas. When 5, moles of O₂(g) is heated at constant pressure from 100 °C to 300 °C.

(A) $\Delta H = +24.5 \text{ kJ} \& w = +8.3 \text{ kJ}$ (B) $\Delta H = +24.5 \text{ kJ} \& w = -8.3 \text{ kJ}$

(C)
$$\Delta H = +32.8 \text{ kJ} & w = -8.3 \text{ kJ}$$

(D) $\Delta H = +32.8 \text{ kJ} \& w = +8.3 \text{ kJ}$

3. For the reaction of one(1) mole of gaseous pentane, C₅H₁₂(gas), with O₂(gas) to form $CO_2(gas)$ and $H_2O(lig)$, at 75 °C, the internal energy change is $\Delta U = -3524$ kJ. ΔH for this reaction at 75 °C is approximately.

(A) -3512 kJ

- (B) -3518 kJ

(C) -3530 kJ (D) -3536 kJ

4. Consider the non-linear molecule, Ethylene (CH₂=CH₂). What is the constant pressure molar heat capacity, C_{p,m}, of Ethylene, assuming that the molecules are free to translate C, rotate and vibrate?

(A) 15.0 R

(B) 15.5 R

(C) 16.0 R

(D) 16.5 R

5. Sodium metal reacts with hydrochloric acid according to the equation:

2 Na(s) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H₂(q).

What is the work, w, when five(5) moles of Na(s) reacts with HCl(ag) at 25 °C and 1 atm. pressure?

(A) -0.5 kJ

(B) -6.2 kJ

(C) -12.4 kJ

(D) +6.2 kJ

6. Consider the following Thermochemical equations:

 $2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$ $\Delta H = -196 kJ$

 $4 S(s) + 6 O_2(g) \rightarrow 4 SO_3(g)$ $\Delta H = -1580 \text{ kJ}$

Use these equations to determine ΔH for the reaction, $S(s) + O_2(g) \rightarrow SO_2(g)$.

(A) -297 kJ

(B) -493 kJ

(C) -692 kJ

(D) +493 kJ

- 7. For the reaction Fe₂O₃(s) + 3 CO(g) \rightarrow 2 Fe(s) + 3 CO₂(g), Δ H = -24 kJ. The Enthalpy of Formations of Fe₂O₃(s) and CO₂(g) are -825 kJ/mol and -394 kJ/mol, respectively. Therefore, the enthalpy of formation of CO(g) is
 - (A) -111 kJ/mol
- (B) -166.5 kJ/mol
- (C) -127 kJ/mol
- (D) Cannot be determined without the Enthalpy of Formation of Fe(s)
- 8. The isothermal compressibility of a substance is defined by: $\pi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$

Consider a hypothetical gas which follows the Equation of State: $p^2V = nRT$ The isothermal compressibility of this hypothetical gas is given by:

- (A) $\frac{1}{T}$
- (B) $\frac{1}{p}$
- (C) $\frac{2V}{p}$
- $(D) \frac{2}{p}$
- 9. The derivative, $\left(\frac{\partial U}{\partial p}\right)_T$, is a measure of the change in Internal Energy when the

pressure is varied at constant temperature. For a gas in which **repulsive** interactions between molecules predominate, when the pressure on one mole of the gas is **decreased** isothermally from 5.bar to 1. bar then:

(A)
$$\left(\frac{\partial U}{\partial p}\right)_T < 0$$
, $\Delta U < 0$

(B)
$$\left(\frac{\partial U}{\partial p}\right)_T < 0$$
, $\Delta U > 0$

(C)
$$\left(\frac{\partial U}{\partial p}\right)_T > 0$$
, $\Delta U < 0$

(D)
$$\left(\frac{\partial U}{\partial p}\right)_T > 0$$
, $\Delta U > 0$

FIVE(5) PROBLEMS on following pages:

NOTE: You Must show your work to receive credit.

Starting with the differential form of the First Law, applied to a Perfect Gas:

 $nC_{V,m}dT = dq - pdV$. dU = dq + dwor

Prove that for a reversible adiabatic expansion (or compression) of a Perfect Gas.

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R/C_{V,m}}$$

You MUST show all steps to receive credit on this derivation.

KandT = dy-pol = 0- MRTAV

at = - R dV T cym V So at = - 2 1 44 Cym V, W

石器=一层的(好)=加(好)

Calculation w, q, and ΔU (all in kJ) when five(5) moles of gaseous CO₂ is converted to the solid (i.e. deposited) at -78 °C and 1 bar pressure. (3(g) > co.(s) Ddy H2 - Doub HO = -25.2 BJH (and.p) 9=2H=nAdqW=5ml(-28.2AThl.) = F126,0 BJ W=-PXV=-P[16-4]=+Pla = tnRT= 5ml(83/5/4K)(195K) = +8100 Tx 1000 = [68.185] JU= 9+W=-126,0+8-1=(-117,9 AI)

Sublimation of CO₂ is 25.2 kJ/mol.

(14) 3.

Solid Carbon Dioxide (CO₂) sublimes directly to the gas at -78 °C. The Enthalpy of

(or 24=211-21pv)-gases same result)

7,2900K 121521 7,2300K

(18) 4. A Perfect Gas has a temperature dependent **constant volume** molar heat capacity, $C_{V,m} = a - \frac{b}{T^2}$, with a = 65. J/mol-K and b = 2.5x10⁶ J•K/mol.

1.5 moles of this gas, originally at a temperature of 900 K and volume of 50. L is cooled reversibly at **constant volume** to 300 K.

Calculate q, w, ΔU and ΔH for this process, in kJ.

(14) 5. Consider one mole of a gas which obeys the equation of state,
$$p\left(V - \frac{A}{p^2}\right) = RT \text{ with A} = 25. \text{ L-atm}^2$$

$$p\left(V - \frac{A}{p^2}\right) = RT \text{ with A} = 25. \text{ L-atm}^2$$

It can be shown that the dependence of enthalpy on pressure is given by:

$$\left(\frac{\partial H}{\partial p}\right)_{T} = V - T \left(\frac{\partial V}{\partial T}\right)_{T}$$

Calculate the change in enthalpy, ΔH (in in kJ) when one mole of this gas is compressed reversibly and isothermally from $p_1 = 2.0$ atm. to $p_2 = 5.0$ atm. at 25 °C.

Notes: 1. $\Delta H \neq 0$ because this is NOT a Perfect Gas 2. 1 L-atm = 101 J