CHEM 5200 - Exam 1 - September 20, 2018

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kPa-L/mol-K 1 L-atm = 101 J 1 L-bar = 100 J 1 kPa-L = 1 J 1 bar = 100 kPa 1 bar = 750 torr 1 atm = 760 torr 1 atm = 1.013 bar = 1.013×10^5 Pa

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R_{C_{V,m}}} \quad \text{or} \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{C_{p,m}} = \left(\frac{V_1}{V_2}\right)^{\gamma} \quad \gamma = \frac{C_{p,m}}{C_{v,m}}$$

Name_____

(27) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

- 1. What are q and ∆U when 1.5 moles of a perfect gas is expanded reversibly and isothermally from 3.0 L to 20 L at 30 °C?
 - (A) q = +7.2 kJ and $\Delta U = 0$ (B) q = +7.2 kJ and $\Delta U = -7.2$ kJ
 - (C) q = 0 and $\Delta U = -7.2$ kJ (D) q = -7.2 kJ and $\Delta U = 0$
- The molar constant volume heat capacity of O₂(g) is constant at C_{V,m} = 24.5 J/mol-K. You can assume that O₂(g) is a Perfect Gas. When 5. moles of O₂(g) is heated at constant pressure from 100 °C to 300 °C,
 - (A) $\Delta H = +24.5 \text{ kJ } \& w = +8.3 \text{ kJ}$ (B) $\Delta H = +24.5 \text{ kJ } \& w = -8.3 \text{ kJ}$
 - (C) $\Delta H = +32.8 \text{ kJ } \& w = -8.3 \text{ kJ}$ (D) $\Delta H = +32.8 \text{ kJ } \& w = +8.3 \text{ kJ}$
- 3. For the reaction of one(1) mole of gaseous pentane, $C_5H_{12}(gas)$, with $O_2(gas)$ to form $CO_2(gas)$ and $H_2O(liq)$, at 75 °C, the internal energy change is $\Delta U = -3524$ kJ. ΔH for this reaction at 75 °C is approximately.
 - (A) -3512 kJ (B) -3518 kJ (C) -3530 kJ (D) -3536 kJ
- 4. Consider the non-linear molecule, Ethylene (CH₂=CH₂). What is the constant pressure molar heat capacity, C_{p,m}, of Ethylene, assuming that the molecules are free to translate C, rotate and vibrate?
 - (A) 15.0 R (B) 15.5 R (C) 16.0 R (D) 16.5 R
- 5. Sodium metal reacts with hydrochloric acid according to the equation:

2 Na(s) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H₂(g).

What is the work, w, when five(5) moles of Na(s) reacts with HCI(aq) at 25 °C and 1 atm. pressure?

- (A) -0.5 kJ (B) -6.2 kJ (C) -12.4 kJ (D) +6.2 kJ
- 6. Consider the following Thermochemical equations:

 $2 \text{ SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ SO}_3(g) \qquad \Delta H = -196 \text{ kJ}$ $4 \text{ S(s)} + 6 \text{ O}_2(g) \rightarrow 4 \text{ SO}_3(g) \qquad \Delta H = -1580 \text{ kJ}$

Use these equations to determine ΔH for the reaction, $S(s) + O_2(g) \rightarrow SO_2(g)$.

(A) -297 kJ (B) -493 kJ (C) -692 kJ (D) +493 kJ

- 7. For the reaction $Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(s) + 3 CO_2(g)$, $\Delta H = -24 kJ$. The Enthalpy of Formations of $Fe_2O_3(s)$ and $CO_2(g)$ are -825 kJ/mol and -394 kJ/mol, respectively. Therefore, the enthalpy of formation of CO(g) is
 - (A) -111 kJ/mol (B) -166.5 kJ/mol (C) -127 kJ/mol
 - (D) Cannot be determined without the Enthalpy of Formation of Fe(s)
- 8. The isothermal compressibility of a substance is defined by: $\pi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T$

Consider a hypothetical gas which follows the Equation of State: $p^2V = nRT$ The isothermal compressibility of this hypothetical gas is given by:

(A)
$$\frac{1}{T}$$
 (B) $\frac{1}{p}$ (C) $\frac{2V}{p}$ (D) $\frac{2}{p}$

9. The derivative, $\left(\frac{\partial U}{\partial p}\right)_T$, is a measure of the change in Internal Energy when the

pressure is varied at constant temperature. For a gas in which **repulsive** interactions between molecules predominate, when the pressure on one mole of the gas is **decreased** isothermally from 5.bar to 1. bar then:

(A) $\left(\frac{\partial U}{\partial p}\right)_T < 0, \Delta U < 0$ (B) $\left(\frac{\partial U}{\partial p}\right)_T < 0, \Delta U > 0$ (C) $\left(\frac{\partial U}{\partial p}\right)_T > 0, \Delta U < 0$ (D) $\left(\frac{\partial U}{\partial p}\right)_T > 0, \Delta U > 0$

FIVE(5) PROBLEMS on following pages:

١

NOTE: You Must show your work to receive credit.

(12) 1. Starting with the differential form of the First Law, applied to a Perfect Gas: dU = dq + dw or $nC_{V,m}dT = dq - pdV$, Prove that for a reversible adiabatic expansion (or compression) of a Perfect Gas,

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R_{C_{V,m}}}$$

You MUST show all steps to receive credit on this derivation.

(15) 2. Three (3) moles of a perfect gas, originally at a pressure of 80 kPa and volume of 100 L is compressed adiabatically and reversibly until the volume has decreased to 25 L. The constant volume molar heat capacity of the gas is $C_{V,m} = 26.5 \text{ J/mol-K}$

Calculate ΔU , ΔH and w for this compression (in kJ).

(14) 3. Solid Carbon Dioxide (CO₂) sublimes directly to the gas at -78 °C. The Enthalpy of Sublimation of CO₂ is 25.2 kJ/mol.

Calculation w, q, and ΔU (all in kJ) when five(5) moles of gaseous CO₂ is converted to the solid (i.e. deposited) at -78 °C and 1 bar pressure.

(18) 4. A Perfect Gas has a temperature dependent **constant volume** molar heat capacity, $C_{V,m} = a - \frac{b}{T^2}$, with a = 65. J/mol-K and b = 2.5x10⁶ J•K/mol.

1.5 moles of this gas, originally at a temperature of 900 K and volume of 50. L is cooled reversibly at **constant volume** to 300 K.

Calculate q, w, ΔU and ΔH for this process, in kJ.

(14) 5. Consider one mole of a gas which obeys the equation of state,

$$p\left(V-\frac{A}{p^2}\right) = RT$$
 with A = 25. L-atm²

It can be shown that the dependence of enthalpy on pressure is given by:

$$\left(\frac{\partial H}{\partial p}\right)_{T} = V - T \left(\frac{\partial V}{\partial T}\right)_{p}$$

Calculate the change in enthalpy, ΔH (in in kJ) when one mole of this gas is compressed reversibly and isothermally from $p_1 = 2.0$ atm. to $p_2 = 5.0$ atm. at 25 °C.

Notes: 1. $\Delta H \neq 0$ because this is NOT a Perfect Gas 2. 1 L-atm = 101 J