CHEM 5200 - Exam 2 - October 17, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kPa-L/mol-K

1 L-atm = 101 J

1 L-bar = 100 J

1 kPa-L = 1 J

1 bar = 100 kPa

1 bar = 750 torr

1 atm = 760 torr

Trouton's Rule: $\Delta_{\text{vap}}S^{\circ} = 85$. J/mol-K

The relation between the Molar Mass (M), density (ρ) and Molar Volume (V_m) of a material is: $\rho = \frac{M}{V_m}$

CHEM 5200 - Exam 2 - October 17, 2017

Name Solation

(45) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

For #1 - #2: Consider the reaction, 2 $N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$. Relevant thermodynamic data is given in the table below:

Compound	Smº	$\Delta_{f}G^{o}$
$NO_2(g)$	240. J/mol-K	+51. kJ/mol
O ₂ (g)	205.	. 4.4 m
$N_2O_5(g)$	356.	+115.

- 1. The Gibbs Energy Change (Δ_r G°) for the above reaction at 25 °C (in kJ) is approximately:
 - (A) -128. kJ

- (B) -26. kJ
- (C) +26. kJ

- (D) Insufficient data is given
- 2. The standard Enthalpy Change ($\triangle_r H^o$) for the above reaction at 25 °C (in kJ) is approximately:
 - (A) -161 kJ

- (B) +109 kJ
- (C) -109. kJ

- (D) Insufficient data is given
- 3. When two (2) moles of N₂(g) at 25 °C and 50 L are compressed reversibly and isothermally to a final volume of 20 L, the entropy change is
 - (A) -7.6 J/K
- (B) +15.2 J/K
- (C) -4.5 kJ/K
- (D) -15.2 J/K
- 4. The **constant pressure** molar heat capacity of CO₂(g) is 37.1 J/mol-K. What is ΔS when 5 moles of CO₂(g) is heated at **constant volume** from 100 °C to 400 °C?
 - (A) +25 J/K
- (B) +109 J/K
- (C) +85 J/K
- (D) +300 J/K
- 5. A sample of 2 moles of N₂(g) at 50 kPa and 20 L is compressed **reversibly** and **adiabatically** to a final pressure of 400 kPa. What is △S for this process?
 - (A) +34.6 J/K
- (B) 0 J/K
- (C) -34.6 J/K
- (D) -97.4 J/K
- 6. The normal boiling point of napthalene, C₁₀H₈, is 218 °C. An estimate of the Enthalpy of Vaporization of Napthalene using Trouton's Rule is:
 - (A) 41.7 kJ/mol
- (B) 52.1 kJ/mol
- (C) 18.5 kJ/mol
- (D) 28.9 kJ/mol

7.		kJ/mol. What is	the entropy of	change of the	oy of Vaporization o e <u>system</u> when tw s at 64 °C?			
((A) +210 J/K	(B) +105 J/	K (C) -	105 J/K	(D) -210 J/K			
8.	The normal melting point of mercury is -39 °C. The enthalpy of fusion of mercury 2.3 kJ/mol. What is the entropy change of the surroundings when 4 (four) mole liquid mercury are crystallized to the solid reversibly at -39 °C?							
	(A) +9.8 J/K	(B) -39.3 J/	(C)	-9.8 J/K	(D) +39.3 J/K			
9.					of 2.5 moles of eth iters at 300 °C is:	ane gas		
	(A) +35.7 kJ	(B) +14.3	kJ ((C)	-35.7 kJ	(D) -18.7 kJ			
10.	change in the Gi	bbs energy [in J] of one(1) mo	ole of liquid to	at 50 °C. Therefore oluene when the p °C is approximate	ressure		
	(A) 1.6x10 ³ J	(B) 5.0x10	² J (C) 1.1x10 ⁴ J	(D) 5.0x10) ⁵ J		
11. A solid has two crystalline forms, A(s) and B(s). For the transition A(s) \rightarrow B(s Δ G° = -9.0 kJ/mol (i.e. at 1 bar pressure). The difference in molar volumes of								
	forms is $V_m(B) - V_m(A) = \Delta V_m = +2.0x10^{-2}$ L/mol. This transition will be spontaneo at pressures a pressure ofbar.							
	(A) above , 4.5x	10⁵ bar	(B) ab	ove , 4500 b	ar			
	(C) below , 4500) bar	(D) Sp	ontaneous a	t all pressures			
	A CONTRACTOR OF THE PROPERTY O	·						

There are Four more MC questions on the following page

MULTIPLE CHOICE QUESTIONS (Continued)

For #12 - #15, consider the phase diagram to the right

- 12. The Critical Point of the substance is represented by:
 - (A) Point A
- (B) Point B
- (C) Point C
- (D) Point D
- 13. The slope of curve A-D is greater than the slope of curve A-C because

(A)
$$\Delta_{\text{sub}}V > \Delta_{\text{vap}}V$$
(C) $\Delta_{\text{sub}}S > \Delta_{\text{vap}}S$

(B)
$$\Delta_{\text{vap}}S > \Delta_{\text{sub}}S$$

(D)
$$\Delta_{\text{sub}}V < \Delta_{\text{vap}}V$$

14. The slope of curve A-B is much greater than the slope of curve A-C because

(A)
$$\Delta_{\text{fus}}V < 0$$

(C)
$$\Delta_{\text{fus}}S \ll \Delta_{\text{vap}}S$$

(D)
$$\Delta_{\text{fus}}S > \Delta_{\text{vap}}S$$

15. If the pressure on this substance is **decreased** from 2000. bar to 1. bar, the melting point temperature will _____ and the boiling point temperature will _____

(A) Decrease, Decrease

(B) Increase, Decrease

(C) Decrease, Increase

(D) Increase, Increase

Four (4) Problems on following pages.

1=2502=523K 1226002 2873K N=2ml.

(12) 1. A Perfect Gas has a temperature dependent molar constant pressure heat capacity, $C_{p,m} = a + bT^3$ with a = 30 J/mol-K and b = 8x10⁻⁸ J/(mol-K⁴).

Two (2) moles of this gas, originally at a temperature, of 250 °C and volume of 30. L is heated reversibly at **constant pressure** to a temperature of 600 °C.

Calculate the Entropy change, ΔS , for this process (in J/K)

 $= na \int_{r_{1}}^{r_{2}} \frac{dT}{T} + nb \int_{r_{1}}^{r_{2}} T^{2} dT$ $= na \int_{r_{1}}^{r_{2}} \frac{dT}{T} + nb \int_{r_{1}}^{r_{2}} T^{2} dT$ $= na \int_{r_{1}}^{r_{2}} \frac{dT}{T} + nb \int_{r_{2}}^{r_{2}} T^{2} dT$ $= na \int_{r_{1}}^{r_{2}} \frac{dT}{T} + nb \int_{r_{2}}^{r_{2}} T^{2} dT$ $= na \int_{r_{1}}^{r_{2}} \frac{dT}{T} + nb \int_{r_{2}}^{r_{2}} T^{2} dT$ $= 2 In \left[30.74 \frac{r_{2}}{r_{2}} \right] + \frac{nb}{3} \left[\frac{r_{2}}{r_{2}}$

Consider a hypothetical gas that obeys the equation of state: (15) 2.

$$p(V-Ap) = nRT \rightarrow V-qp^2 \frac{nRT}{P} \rightarrow V = \frac{nRT}{P} + Ap$$

If this gas undergoes an isothermal compression from p1 to p2, develop **INTEGRATED** expressions for ΔU , ΔH and ΔA in terms of n, R, T, A, p_1 and p_2 .

XAZ TOSHUP () = T() + V = T[-nz]t nzt + AP

: EN= 5/2(34), dp=5/2 Apdp # 2[B-P] = SA]

dele Tals-pall - (Sp) = The) - Plan = The T-Pl-met will

- The Tals-pall - (Sp) = The part of the par

M= Sp. Cop top 2 Sp. Apolp F= AIR-PI KU

dA=-SAT-PAN- (SA) v=0-P(SV) = -P[-not + A] = +MRT-AP

SAZ SP. [MAT - AP] dP = [nath(P-A)-2[A-A-7] (= &A

The normal boiling point of Bromine liquid, Br2(liq) is 59 °C. The Enthalpy of Vaporization is 29.5 kJ/mol at 59 °C. The constant pressure molar heat capacity of bromine liquid, Br₂(liq) is 76. J/mol-K The constant pressure molar heat capacity of bromine gas, Br₂(gas), is 36. J/mol-K. Calculate the entropy change of the Surroundings, ΔS_{surr} , (in J/mol-K) when one (1) mole of supercooled Br2(gas) condenses to Br2(liq) at 30 °C. JSgur, we held. & Sgir = 70 = 308 K, Bus (14) Jugo (308 K) = ga + ga + ga + garlang + God (Mg) = Gora)[7, 7] + ANW(332K) + Gorly)[7, 5] =36 Jax [332-308] + (-2.95-41/5/)+ >6 TAx [308-332] = +8645/1+ [-18245/] Jegs (308K) = -39,468 FA 98m (308K) = +30,460 Th J Som = #30,460 5/ = 1

1,2350 2308k - Notes Condonation Augustion in Many 17

(16) 3.

of copper is 13.3 kJ/mol. What pressure must be applied (in bar) to increase melting point of Cu to 1100 °C? T. = 10850 +273 5 1358K, F2 2 1002 62>3 2 /3>3K SV2/5/ 2/50 Spus 1/2 1.33 × 10 5/10. × 12-bar = 133 L-bar/9. sum = Vm (lin) - Valse) = m - m - m = 63-596. = 63-516 = 0,800 cm/s × 12 Fingland = 0,800 cm/s × 12 = 8.0×10-4 Chs Sf = 405/1 = 1332-bar/ml, = 122 bar/k Sp = 122 bank x15k = 1830 ban.

The densities of solid and liquid copper [Cu, M = 63.5] are 8.9 g/mL and 8.0 g/mL,

respectively. The normal melting point of copper is 1085 °C. The enthalpy of fusion

(12) 4