INFORMATION PAGE (Use for reference and for scratch paper) Constants and Conversion Factors:
$\mathrm{R}=0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}$
$1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J}$
$1 \mathrm{~L}-\mathrm{bar}=100 \mathrm{~J}$
$1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J}$
1 bar $=100 \mathrm{kPa}$
1 bar = 750 torr
$1 \mathrm{~atm}=760$ torr

Trouton's Rule: $\Delta_{\text {vap }} S^{\circ}=85 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$

The relation between the Molar Mass (M), density (ρ) and Molar Volume (V_{m}) of a material is: $\rho=\frac{M}{V_{m}}$

CHEM 5200-Exam 2 - October 17, 2017

Name

\qquad

(45) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

For \#1-\#2: Consider the reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$. Relevant thermodynamic data is given in the table below:

Compound	$\mathbf{S}_{\mathbf{m}}{ }^{\circ}$	$\Delta \mathbf{G}^{0}$
$\mathrm{NO}_{2}(\mathrm{~g})$	$240 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$	$+51 . \mathrm{kJ} / \mathrm{mol}$
$\mathrm{O}_{2}(\mathrm{~g})$	205.	
$\mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$	356.	+115.

1. The Gibbs Energy Change $\left(\Delta_{\mathrm{r}} \mathrm{G}^{\circ}\right)$ for the above reaction at $25^{\circ} \mathrm{C}$ (in kJ) is approximately:
(A) -128. kJ
(B) $-26 . \mathrm{kJ}$
(C) +26. kJ
(D) Insufficient data is given
2. The standard Enthalpy Change ($\Delta r^{H} \mathrm{H}^{\circ}$) for the above reaction at $25^{\circ} \mathrm{C}$ (in kJ$)$ is approximately:
(A) -161 kJ
(B) +109 kJ
(C) $-109 . \mathrm{kJ}$
(D) Insufficient data is given
3. When two (2) moles of $\mathrm{N}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ and 50 L are compressed reversibly and isothermally to a final volume of 20 L , the entropy change is
(A) $-7.6 \mathrm{~J} / \mathrm{K}$
(B) $+15.2 \mathrm{~J} / \mathrm{K}$
(C) $-4.5 \mathrm{~kJ} / \mathrm{K}$
(D) $-15.2 \mathrm{~J} / \mathrm{K}$
4. The constant pressure molar heat capacity of $\mathrm{CO}_{2}(\mathrm{~g})$ is $37.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. What is $\Delta \mathrm{S}$ when 5 moles of $\mathrm{CO}_{2}(\mathrm{~g})$ is heated at constant volume from $100^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$?
(A) $+25 \mathrm{~J} / \mathrm{K}$
(B) $+109 \mathrm{~J} / \mathrm{K}$
(C) $+85 \mathrm{~J} / \mathrm{K}$
(D) $+300 \mathrm{~J} / \mathrm{K}$
5. A sample of 2 moles of $\mathrm{N}_{2}(\mathrm{~g})$ at 50 kPa and 20 L is compressed reversibly and adiabatically to a final pressure of 400 kPa . What is $\Delta \mathrm{S}$ for this process?
(A) $+34.6 \mathrm{~J} / \mathrm{K}$
(B) $0 \mathrm{~J} / \mathrm{K}$
(C) $-34.6 \mathrm{~J} / \mathrm{K}$
(D) $-97.4 \mathrm{~J} / \mathrm{K}$
6. The normal boiling point of napthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$, is $218{ }^{\circ} \mathrm{C}$. An estimate of the Enthalpy of Vaporization of Napthalene using Trouton's Rule is:
(A) $41.7 \mathrm{~kJ} / \mathrm{mol}$
(B) $52.1 \mathrm{~kJ} / \mathrm{mol}$
(C) $18.5 \mathrm{~kJ} / \mathrm{mol}$
(D) $28.9 \mathrm{~kJ} / \mathrm{mol}$
7. The normal boiling point of methanol is $64^{\circ} \mathrm{C}$. The Enthalpy of Vaporization of methanol is $35.3 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change of the system when two (2) moles of liquid methanol are vaporized reversibly to the gas at $64^{\circ} \mathrm{C}$?
(A) $+210 \mathrm{~J} / \mathrm{K}$
(B) $+105 \mathrm{~J} / \mathrm{K}$
(C) $-105 \mathrm{~J} / \mathrm{K}$
(D) $-210 \mathrm{~J} / \mathrm{K}$
8. The normal melting point of mercury is $-39^{\circ} \mathrm{C}$. The enthalpy of fusion of mercury is $2.3 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change of the surroundings when 4 (four) moles of liquid mercury are crystallized to the solid reversibly at $-39^{\circ} \mathrm{C}$?
(A) $+9.8 \mathrm{~J} / \mathrm{K}$
(B) $-39.3 \mathrm{~J} / \mathrm{K}$
(C) $-9.8 \mathrm{~J} / \mathrm{K}$
(D) $+39.3 \mathrm{~J} / \mathrm{K}$
9. The change in the Gibbs energy (in $\mathbf{k J}$) when the volume of $\mathbf{2 . 5}$ moles of ethane gas $\left[\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})\right]$ is increased from isothermally 0.50 Liters to 10 Liters at $300^{\circ} \mathrm{C}$ is:
(A) +35.7 kJ
(B) +14.3 kJ
(C) -35.7 kJ
(D) -18.7 kJ
10. The density of liquid toluene, $\mathrm{C}_{7} \mathrm{H}_{8}(\mathrm{l})[\mathrm{M}=92]$, is $0.90 \mathrm{~g} / \mathrm{mL}$ at $50^{\circ} \mathrm{C}$. Therefore, the change in the Gibbs energy [in J] of one(1) mole of liquid toluene when the pressure is increased isothermally from 100 kPa to $5,000 \mathrm{kPa}$ at $50^{\circ} \mathrm{C}$ is approximately
(A) $1.6 \times 10^{3} \mathrm{~J}$
(B) $5.0 \times 10^{2} \mathrm{~J}$
(C) $1.1 \times 10^{4} \mathrm{~J}$
(D) $5.0 \times 10^{5} \mathrm{~J}$
11. A solid has two crystalline forms, $A(s)$ and $B(s)$. For the transition $A(s) \rightarrow B(s)$, $\Delta \mathrm{G}^{\circ}=-9.0 \mathrm{~kJ} / \mathrm{mol}$ (i.e. at 1 bar pressure). The difference in molar volumes of the two forms is $V_{m}(B)-V_{m}(A)=\Delta V_{m}=+2.0 \times 10^{-2} \mathrm{~L} / \mathrm{mol}$. This transition will be spontaneous at pressures \qquad a pressure of \qquad bar.
(A) above, 4.5×10^{5} bar
(B) above , 4500 bar
(C) below , 4500 bar
(D) Spontaneous at all pressures

There are Four more MC questions on the following page

MULTIPLE CHOICE QUESTIONS (Continued)

For \#12-\#15, consider the phase diagram to the right

12. The Critical Point of the substance is represented by:
(A) Point A
(B) Point B
(C) Point C
(D) Point D
13. The slope of curve $A-D$ is greater than the slope of curve $A-C$ because
(A) $\Delta_{\text {sub }} \mathrm{V}>\Delta_{\text {vap }} \mathrm{V}$
(B) $\Delta_{\text {vap }} S>\Delta_{\text {sub }} S$
(C) $\Delta_{\text {sub }} S>\Delta_{\mathrm{vap}} S$
(D) $\Delta_{\text {sub }} V<\Delta_{\text {vap }} V$
14. The slope of curve $A-B$ is much greater than the slope of curve $A-C$ because
(A) Δ fus $V<0$
(B) Δ fus $V \ll \Delta$ vap V
(C) $\Delta_{\text {fus }} S \ll \Delta_{\text {vap }} S$
(D) Δ fus $S \gg \Delta$ vap S
15. If the pressure on this substance is decreased from 2000. bar to 1. bar, the melting point temperature will \qquad and the boiling point temperature will \qquad
(A) Decrease, Decrease
(B) Increase, Decrease
(C) Decrease, Increase
(D) Increase, Increase
(12) 1. A Perfect Gas has a temperature dependent molar constant pressure heat capacity, $C_{p, m}=a+b T^{3}$ with $\mathrm{a}=30 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $\mathrm{b}=8 \times 10^{-8} \mathrm{~J} /\left(\mathrm{mol}-\mathrm{K}^{4}\right)$.
Two (2) moles of this gas, originally at a temperature, of $250^{\circ} \mathrm{C}$ and volume of 30 L is heated reversibly at constant pressure to a temperature of $600^{\circ} \mathrm{C}$.

Calculate the Entropy change, $\Delta \mathrm{S}$, for this process (in J / K)
(15) 2. Consider a hypothetical gas that obeys the equation of state:
$\mathrm{p}(\mathrm{V}-\mathrm{Ap})=\mathrm{nRT} \quad$ Note: \mathbf{A} is an arbitrary constant, and NOT the Helmholtz Energy.
If this gas undergoes an isothermal compression from p_{1} to p_{2}, develop INTEGRATED expressions for $\Delta \mathrm{U}, \Delta \mathrm{H}$ and $\Delta \mathrm{A}$ in terms of $\mathrm{n}, \mathrm{R}, \mathrm{T}, \mathrm{A}, \mathrm{p}_{1}$ and p_{2}.
(16) 3. The normal boiling point of Bromine liquid, $\mathrm{Br}_{2}\left(\right.$ liq) is $59{ }^{\circ} \mathrm{C}$.

The Enthalpy of Vaporization is $29.5 \mathrm{~kJ} / \mathrm{mol}$ at $59^{\circ} \mathrm{C}$.
The constant pressure molar heat capacity of bromine liquid, $\mathrm{Br}_{2}(\mathrm{liq})$ is $76 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$ The constant pressure molar heat capacity of bromine gas, Br_{2} (gas), is $36 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$.

Calculate the entropy change of the Surroundings, $\Delta \mathbf{S}_{\text {surr }}$, (in $\mathrm{J} / \mathrm{mol}-\mathrm{K}$) when one (1) mole of supercooled Br_{2} (gas) condenses to $\mathrm{Br}_{2}\left(\right.$ liq) at $35^{\circ} \mathrm{C}$.
(12) 4 The densities of solid and liquid copper [Cu, $\mathrm{M}=63.5$] are $8.9 \mathrm{~g} / \mathrm{mL}$ and $8.0 \mathrm{~g} / \mathrm{mL}$, respectively. The normal melting point of copper is $1085^{\circ} \mathrm{C}$. The enthalpy of fusion of copper is $13.3 \mathrm{~kJ} / \mathrm{mol}$.

What pressure must be applied (in bar) to increase melting point of Cu to $1100^{\circ} \mathrm{C}$?

