INFORMATION PAGE (Use for reference and for scratch paper)
Constants and Conversion Factors:
$\mathrm{R}=0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}$
$1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J}$
1 L-bar = 100 J
$1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J}$
1 bar $=100 \mathrm{kPa}$
1 bar $=750$ torr
1 atm $=760$ torr

Trouton's Rule: $\Delta_{\mathrm{vap}} \mathrm{S}^{\circ}=85 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$

The relation between the Molar Mass (M), density (ρ) and Molar Volume (V_{m}) of a material is: $\rho=\frac{M}{V_{m}}$

NOTE: if a question asks for the value of ΔS (without stating it's the "surroundings"), it is asking for the value of $\Delta \mathrm{S}$ for the system.

CHEM 5200-Exam 2 - October 11, 2018

Name \qquad

NOTE: if a question asks for the value of ΔS (without stating it's the "surroundings"), it is asking for the value of ΔS for the system.

(51) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. The entropy change is $+237 \mathrm{~J} / \mathrm{K}$ for the reaction: $2 \mathrm{HgO}(\mathrm{s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$. The standard molar entropies of $\mathrm{HgO}(\mathrm{s})$ and $\mathrm{O}_{2}(\mathrm{~g})$ are $70 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $205 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. Therefore, the standard molar entropy of $\mathrm{Hg}(\mathrm{I})$ is:
(A) $86 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(B) $0 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) $51 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(D) $102 \mathrm{~J} / \mathrm{K}$

For \#2: Consider the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$. Relevant thermodynamic data is given in the table below:

Compound	$\mathbf{S m}^{\mathbf{o}}$	$\Delta \mathbf{f}^{\mathbf{o}}$
$\mathrm{SO}_{2}(\mathrm{~g})$	$248 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$	$-350 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}_{2}(\mathrm{~g})$	205	
$\mathrm{SO}_{3}(\mathrm{~g})$	257	-371

2. The Enthalpy change $\left(\Delta \mathrm{H}^{\circ}\right)$ change for the above reaction at $25^{\circ} \mathrm{C}$ is:
(A) +13.7 kJ
(B) -46.7 kJ
(C) -97.7 kJ
(D) There is insufficient data
3. A sample of 0.5 moles of $\mathrm{O}_{2}(\mathrm{~g})$ originally at 500 kPa and 5 L is expanded reversibly and isothermally to a final pressure of 100 kPa . What is $\Delta \mathrm{S}$ for this process?
(A) $+13.4 \mathrm{~J} / \mathrm{K}$
(B) $-6.7 \mathrm{~J} / \mathrm{K}$
(C) $+4030 \mathrm{~J} / \mathrm{K}$
(D) $+6.7 \mathrm{~J} / \mathrm{K}$
4. The constant volume molar heat capacity of $\operatorname{Ar}(\mathrm{g})$ is $12.5 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. What is $\Delta \mathrm{S}$ when 3 moles of $\operatorname{Ar}(\mathrm{g})$ is cooled at constant pressure from $500^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
(A) $+27.3 \mathrm{~J} / \mathrm{K}$
(B) $-45.5 \mathrm{~J} / \mathrm{K}$
(C) $-100.5 \mathrm{~J} / \mathrm{K}$
(D) $-27.3 \mathrm{~J} / \mathrm{K}$
5. A sample of 3 moles of $\mathrm{O}_{2}(\mathrm{~g})$ at an initial temperature of $100^{\circ} \mathrm{C}$ and initial volume of 60 L is expanded reversibly and adiabatically to a final volume of 200 L . What is ΔS for this process?
(A) $-30 \mathrm{~J} / \mathrm{K}$
(B) $+11.2 \mathrm{~kJ} / \mathrm{K}$
(C) $0 \mathrm{~kJ} / \mathrm{K}$
(D) $+30 \mathrm{~J} / \mathrm{K}$

For \#6 - \#8: The normal boiling point of methanol $\left[\mathrm{CH}_{3} \mathrm{OH}, \mathrm{M}=32\right]$ is $65^{\circ} \mathrm{C}$. The Enthalpy of Vaporization of methanol is $35.2 \mathrm{~kJ} / \mathrm{mol}$.
80 grams of methanol gas are condensed to the liquid at $65^{\circ} \mathrm{C}$ and 1 bar pressure. Calculate the following quantities for this condensation:
6. The Entropy Change, $\Delta \mathrm{S}$, for this process is approximately
(A) $+260 \mathrm{~J} / \mathrm{K}$
(B) $-104 \mathrm{~J} / \mathrm{K}$
(C) $-260 \mathrm{~J} / \mathrm{K}$
(D) None of the above
7. The work, w, for this process is approximately
(A) +7.0 kJ
(B) +8.8 kJ
(C) -7.0 kJ
(D) None of the above
8. The Internal Energy change, $\Delta \mathrm{U}$ for this process is approximately
(A) -95 kJ
(B) -81 kJ
(C) -88 kJ
(D) None of the above
9. The normal boiling point of toluene is $111{ }^{\circ} \mathrm{C}$. The enthalpy of vaporization of toluene is $39.2 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change of the surroundings when one mole of toluene vaporizes at $111{ }^{\circ} \mathrm{C}$?
(A) $+102 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(B) $+35.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) $-102 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(D) $-353 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
10. The Enthalpy of Vaporizaton of cyclooctane, $\mathrm{C}_{8} \mathrm{H}_{16}$, is $37.0 \mathrm{~kJ} / \mathrm{mol}$. An estimate of the normal boiling point (in ${ }^{\circ} \mathrm{C}$) of cyclooctane using Trouton's Rule is:
(A) $128{ }^{\circ} \mathrm{C}$
(B) $435{ }^{\circ} \mathrm{C}$
(C) $294{ }^{\circ} \mathrm{C}$
(D) $162{ }^{\circ} \mathrm{C}$
11. The change in the Gibbs Energy for a certain constant pressure process is given by: $\Delta G=a+\mathrm{bT}^{2}, a=4,000 \mathrm{~J}, \mathrm{~b}=5 . \times 10^{-2} \mathrm{~J} / \mathrm{K}^{2}$. The value of $\Delta \mathrm{S}$ for this process at $50^{\circ} \mathrm{C}$ is approximately:
(A) $-16 \mathrm{~J} / \mathrm{K}$
(B) $-32 \mathrm{~J} / \mathrm{K}$
(C) $0 \mathrm{~J} / \mathrm{K}$
(D) $+32 \mathrm{~J} / \mathrm{K}$
12. The density of liquid benzene,, $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})[\mathrm{M}=78]$, is $0.85 \mathrm{~g} / \mathrm{mL}$ at $50^{\circ} \mathrm{C}$. Therefore, the change in the Gibbs energy [in J] of one(1) mole of benzene when the pressure is increased isothermally from 100 kPa to $10,000 \mathrm{kPa}$ at $50^{\circ} \mathrm{C}$ is approximately
(A) 910 J
(B) $9.1 \times 10^{4} \mathrm{~J}$
(C) $1.2 \times 10^{4} \mathrm{~J}$
(D) 770 J

There are Five more MC questions on the following page

13. A solid has two crystalline forms, $A(s)$ and $B(s)$. For the transition $A(s) \rightarrow B(s)$, $\Delta \mathrm{G}^{0}=+10 \mathrm{~kJ} / \mathrm{mol}$ (i.e. at 1 bar pressure). The difference in molar volumes of the two forms is $V_{m}(B)-V_{m}(A)=\Delta V_{m}=-25 . \mathrm{mL} / \mathrm{mol}$. This transition will be spontaneous at pressures \qquad a pressure of \qquad bar.
(A) above, 4×10^{5} bar
(B) below, 4000 bar
(C) above, 4000 bar
(D) Not spontaneous at any pressure

For \#14-\#17, consider the phase diagram on the right.

14. The Triple Point in the diagram is represented by
(A) Point A
(B) Point B
(C) Point C
(D) Point D
15. The slope of curve A-B is steeper than the slope of curve A-D because
(A) $\Delta_{\text {vap }} S>\Delta_{\text {sub }} S$
(B) $\Delta_{\text {sub }} S>\Delta_{\mathrm{vap}} S$
(C) $\Delta_{\text {sub }} V>\Delta_{\mathrm{vap}} \mathrm{V}$
(D) $\Delta_{\text {sub }} V<\Delta_{\text {vap }} V$
16. The slope of curve A-C is negative because
(A) Δ fus $S^{0}>0$
(B) $\Delta_{\text {fus }} S^{0}<0$
(C) $\mathrm{V}_{\mathrm{m}}(\mathrm{liq})>\mathrm{V}_{\mathrm{m}}($ sol $)$
(D) $\mathrm{V}_{\mathrm{m}}($ sol $)>\mathrm{V}_{\mathrm{m}}($ liq $)$
17. If the pressure on this substance is increased from 1 bar to 500 bar, the boiling point will \qquad and the melting point will \qquad .
(A) decrease, increase
(B) increase, increase
(C) increase, decrease
(D) increase/ increase or decrease depends on relative solid and liquid entropies
(18) 1. A Perfect Gas has a temperature dependent constant pressure molar heat capacity, $C_{p, m}=a-\frac{b}{T^{2}}$, with $\mathrm{a}=75 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$ and $\mathrm{b}=3.0 \times 10^{6} \mathrm{~J} \cdot \mathrm{~K} / \mathrm{mol}$. 3 moles of this gas, originally at a temperature of $100^{\circ} \mathrm{C}$ and volume of $75 . \mathrm{L}$ is heated reversibly at constant pressure to $400^{\circ} \mathrm{C}$.
(9) (a) Calculate the Entropy change, $\Delta \mathrm{S}$, for this process (in J / K).
(18) 1. CONT'D.

A Perfect Gas has a temperature dependent constant pressure molar heat capacity, $C_{p, m}=a-\frac{b}{T^{2}}$, with $\mathrm{a}=75 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$ and $\mathrm{b}=3.0 \times 10^{6} \mathrm{~J} \cdot \mathrm{~K} / \mathrm{mol}$.
3 moles of this gas, originally at a temperature of $100^{\circ} \mathrm{C}$ and volume of $75 . \mathrm{L}$ is heated reversibly at constant pressure to $400^{\circ} \mathrm{C}$.
(9) (b) Calculate the heat (q) and work (w) for this process (in kJ).
(16) 2. The normal melting point of CHCl_{3} is $-63^{\circ} \mathrm{C}$.

The Enthalpy of Fusion of CHCl_{2} at $-63^{\circ} \mathrm{C}$ is $8.80 \mathrm{~kJ} / \mathrm{mol}$
The constant pressure heat capacity of liquid CHCl_{3} is $116 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ The constant pressure heat capacity of solid CHCl_{3} is $96 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

Calculate the entropy change of the system, $\Delta \mathbf{S}_{\text {sys }}$, when one (1) mole of liquid trichloromethane freezes irreversibly to the solid at $-90^{\circ} \mathrm{C}$.
(15) 3. Consider a hypothetical gas that obeys the equation of state:

$$
\left(p+B V^{2}\right) V=R T, \text { where } B \text { is a constant }
$$

If this gas undergoes an isothermal expansion from V_{1} to V_{2}, develop INTEGRATED expressions for $\Delta U, \Delta H$ and ΔG in terms of B, R, T, V_{1} and V_{2}.

