CHEM 5200 - Exam 2 - October 11, 2018

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kPa-L/mol-K 1 L-atm = 101 J 1 L-bar = 100 J 1 kPa-L = 1 J 1 bar = 100 kPa 1 bar = 750 torr

1 atm = 760 torr

Trouton's Rule: $\Delta_{vap}S^o = 85$. J/mol-K

The relation between the Molar Mass (M), density (ρ) and Molar Volume (V_m) of a material is: $\rho = \frac{M}{V_m}$

NOTE: if a question asks for the value of ΔS (without stating it's the "surroundings"), it is asking for the value of ΔS for the system.

CHEM 5200 - Exam 2 - October 11, 2018

Name_____

NOTE: if a question asks for the value of ΔS (without stating it's the "surroundings"), it is asking for the value of ΔS for the system.

- (51) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)
 - 1. The entropy change is +237 J/K for the reaction: $2 \text{ HgO}(s) \rightarrow 2 \text{ Hg}(I) + O_2(g)$. The standard molar entropies of HgO(s) and O₂(g) are 70 J/mol-K and 205 J/mol-K. Therefore, the standard molar entropy of Hg(I) is:
 - (A) 86 J/mol-K (B) 0 J/mol-K (C) 51 J/mol-K (D) 102 J/K

For #2: Consider the reaction, $2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$. Relevant thermodynamic data is given in the table below:

Compound	Sm ^o	∆f G °
SO ₂ (g)	248 J/mol-K	-350 kJ/mol
O ₂ (g)	205	
SO₃(g)	257	-371

2. The Enthalpy change (Δ H^o) change for the above reaction at 25 °C is:

(A) +13.7 kJ (B) -46.7 kJ (C) -97.7 kJ

- (D) There is insufficient data
- 3. A sample of 0.5 moles of $O_2(g)$ originally at 500 kPa and 5 L is expanded reversibly and isothermally to a final pressure of 100 kPa. What is ΔS for this process?
 - (A) +13.4 J/K (B) -6.7 J/K (C) +4030 J/K (D) +6.7 J/K
- 4. The **constant volume** molar heat capacity of Ar(g) is 12.5 J/mol-K. What is Δ S when 3 moles of Ar(g) is cooled at **constant pressure** from 500 °C to 100 °C?
 - (A) +27.3 J/K (B) -45.5 J/K (C) -100.5 J/K (D) -27.3 J/K
- 5. A sample of 3 moles of $O_2(g)$ at an initial temperature of 100 °C and initial volume of 60 L is expanded **reversibly** and **adiabatically** to a final volume of 200 L. What is ΔS for this process?
 - (A) -30 J/K (B) +11.2 kJ/K (C) 0 kJ/K (D) +30 J/K

For #6 - #8: The normal boiling point of methanol [CH₃OH, M=32] is 65 °C. The Enthalpy of Vaporization of methanol is 35.2 kJ/mol.

80 grams of methanol gas are condensed to the liquid at 65 °C and 1 bar pressure. Calculate the following quantities for this condensation:

6. The Entropy Change, ΔS , for this process is approximately

- (A) +260 J/K (B) -104 J/K (C) -260 J/K
- (D) None of the above
- 7. The work, w, for this process is approximately
 - (A) +7.0 kJ (B) +8.8 kJ (C) -7.0 kJ
 - (D) None of the above
- 8. The Internal Energy change, ΔU for this process is approximately
 - (A) -95 kJ (B) -81 kJ (C) -88 kJ
 - (D) None of the above
- The normal boiling point of toluene is 111 °C. The enthalpy of vaporization of toluene is 39.2 kJ/mol. What is the entropy change of the <u>surroundings</u> when one mole of toluene vaporizes at 111 °C?
 - (A) +102 J/mol-K (B) +35.3 J/mol-K (C) -102 J/mol-K (D) -353 J/mol-K
- 10. The Enthalpy of Vaporizaton of cyclooctane, C₈H₁₆, is 37.0 kJ/mol. An estimate of the normal boiling point (in °C) of cyclooctane using Trouton's Rule is:
 - (A) 128 °C (B) 435 °C (C) 294 °C (D) 162 °C
- 11. The change in the Gibbs Energy for a certain constant pressure process is given by: $\Delta G = a + bT^2$, a = 4,000 J, b = 5. x10⁻² J/K^2. The value of \Delta S for this process at 50 °C is approximately:
 - (A) -16 J/K (B) -32 J/K (C) 0 J/K (D) +32 J/K
- 12. The density of liquid benzene,, C₆H₆(I) [M=78], is 0.85 g/mL at 50 °C. Therefore, the change in the Gibbs energy [in J] of **one(1)** mole of benzene when the pressure is **increased** isothermally from 100 kPa to 10,000 kPa at 50 °C is approximately
 - (A) 910 J (B) 9.1×10^4 J (C) 1.2×10^4 J (D) 770 J

There are Five more MC questions on the following page

- 13. A solid has two crystalline forms, A(s) and B(s). For the transition A(s) → B(s), ΔG°= +10. kJ/mol (i.e. at 1 bar pressure). The difference in molar volumes of the two forms is V_m(B) - V_m(A) = ΔV_m = -25. mL/mol. This transition will be **spontaneous** at pressures ______ a pressure of ______bar.
 - (A) above , $4x10^5$ bar
 - (B) below , 4000 bar
 - (C) above , 4000 bar
- (D) Not spontaneous at any pressure

For #14 - #17, consider the phase diagram on the right.

14. The Triple Point in the diagram is represented by

(A) Point A (B) Point B (C) Point C (D) Point D

15. The slope of curve A-B is steeper than the slope of curve A-D because

(A) $\Delta_{vap}S > \Delta_{sub}S$	(B) $\Delta_{sub}S > \Delta_{vap}S$
(C) $\Delta_{sub}V > \Delta_{vap}V$	(D) $\Delta_{sub}V < \Delta_{vap}V$

16. The slope of curve A-C is negative because

- (A) $\Delta_{fus}S^{\circ} > 0$ (B) $\Delta_{fus}S^{\circ} < 0$ (C) $V_m(liq) > V_m(sol)$ (D) $V_m(sol) > V_m(liq)$
- 17. If the pressure on this substance is increased from 1 bar to 500 bar, the boiling point will ______ and the melting point will ______.
 - (A) decrease, increase
 - (B) increase, increase
 - (C) increase, decrease
 - (D) increase/ increase or decrease depends on relative solid and liquid entropies

There are Three (3) Problems on following pages.

- (18) 1. A Perfect Gas has a temperature dependent constant pressure molar heat capacity, C_{p,m} = a b/T², with a = 75. J/mol-K and b = 3.0x10⁶ J•K/mol.
 3 moles of this gas, originally at a temperature of 100 °C and volume of 75. L is heated reversibly at constant pressure to 400 °C.
 - (9) (a) Calculate the Entropy change, ΔS , for this process (in J/K).

(18) 1. **CONT'D.**

A Perfect Gas has a temperature dependent constant pressure molar heat

capacity, $C_{p,m} = a - \frac{b}{T^2}$, with a = 75. J/mol-K and b = 3.0×10^6 J•K/mol. 3 moles of this gas, originally at a temperature of 100 °C and volume of 75. L is heated reversibly at **constant pressure** to 400 °C.

(9) (b) Calculate the heat (q) and work (w) for this process (in kJ).

 (16) 2. The normal melting point of CHCl₃ is -63 °C. The Enthalpy of Fusion of CHCl₂ at -63 °C is 8.80 kJ/mol The constant pressure heat capacity of liquid CHCl₃ is 116 J/mol-K The constant pressure heat capacity of solid CHCl₃ is 96 J/mol-K

Calculate the entropy change of the **system**, Δ **S**_{sys}, when one (1) mole of liquid trichloromethane freezes irreversibly to the solid at -90 °C.

(15) 3. Consider a hypothetical gas that obeys the equation of state:

 $(p+BV^2)V=RT$, where B is a constant

If this gas undergoes an isothermal expansion from V₁ to V₂, develop **INTEGRATED** expressions for ΔU , ΔH and ΔG in terms of B, R, T, V₁ and V₂.