CHEM 5200 - Exam 3 - November 7, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 8.31 J/mol-K = 8.31 kPa-L/mol-K = 0.00831 kJ/mol-K

1 L-atm = 101 J

1 L-bar = 100 J

1 kPa-L = 1 J

1 bar = 100 kPa

1 bar = 750 torr

1 atm = 760 torr

1 kPa = 7.50 torr

Molar Masses C₁₀H₈ - 128.

 $C_6H_6 - 78$.

C₁₂H₂₂O₁₁ - 342.

C₆H₅CH₃ - 92.

CHEM 5200 - Exam 3 - November 7, 2017

1.	When 0.90 moles of $Cl_2(g)$ are mixed with 0.40 moles of $O_2(g)$ at 150 °C, the Gibbs Energy of mixing, ΔG_{mix} , is approximately:				
	(A) -1.6 kJ	(B) -2.1 kJ	(C) -2.2 kJ	(D) -2.8 kJ	
2.	are mixed together	onsider a mixture of two liquids, A and B. When 6.0 moles of A and 4.0 moles e mixed together, the volume of the solution is 700 cm ³ . The Partial Molar Vo A is 80. cm ³ /mol. Therefore, the Partial Molar Volume of B is approximately:			
	(A) 55 cm ³ /mol	(B) 220 cm	n³/mol (C)	63 cm ³ /mol	

- 3. When 90 grams of napthalene, C₁₀H₈, is dissolved in 200 grams of benzene, C₆H₆ $(T_b^\circ=80 \, {}^\circ\text{C}, K_b=2.5 \, {}^\circ\text{C/m})$, the boiling point of the solution is
 - `88.8 °C (B) 71.2 °C (C) 81.8 °C (D) 108.8 °C

(D) Cannot be determined without the density of the solution

- 4. When 20 grams of an unknown compound is dissolved in 150 grams of water (K_f = 1.86 °C/m), the freezing point of the solution is -3.5 °C. What is the Molar Mass of the unknown compound?
 - (C) 71. g/mol (D) 45 g/mol (A) 10.6 g/mol (B) 124 g/mol
- 5. When a sample of sucrose (C₁₂H₂₂O₁₁) is dissolved in 12.0 L of aqueous solution at 40 °C, the osmotic pressure of the solution is 80. torr. Aproximately how many grams of sucrose are dissolved in the solution?
 - (A) 0.12 g (1B) 16.8 a (C) 1.4 g(D) 52.3 g

The enthalpy change for this reaction is -510 kJ.						
The value of the equilib	The value of the equilibrium constant at 100 °C is 0.04.					
6. For the above reaction, if the temperature is decreased , then						
(A) the equilibrium	(A) the equilibrium will move to the left and K will decrease					
	(B) the equilibrium will move to the right and K will increase					
` ,	(C) the equilibrium will move to the left and K will remain constant					
(D) the equilibrium will move to the right and K will remain constant						
7. For the above reaction, if $N_2(g)$ is added at constant total pressure, then						
(A) the equilibrium will move to the left and K will decrease						
(B) the equilibrium will move to the right and K will increase						
	(C) the equilibrium will move to the left and K will remain constant					
(D) the equilibrium will move to the right and K will remain constant						
8. What is the approximate value of ΔG for the above reaction at 100 °C when $P_{PCI3} = P_{O2} = 2.0$ bar and $P_{POCI3} = 0.2$ bar?						
$(A)^{-6.4}$ kJ	(B) +10.0 kJ	(C) -26.4 kJ	(D) +16.4 kJ			
9. What is the approximate value of the equilibrium constant for the above reaction at 120 °C?						
(A) 2.3×10^3	(B) 170	(C) 2.3x10 ⁻⁴	(D) 9.2x10 ⁻⁶			
10. Consider the gas phase equilibrium, $A(g) \xrightarrow{K} 2B(g)$. When the pressures of A and						
B are each 0.10 bar at 100 °C, the Gibbs Energy change for the reaction is -5.0 kJ. What is the approximate value of the equilibrium constant?						
(A) 0.5	(B) 2.0	(C) 5.0	(D) 0.2			

For #6 - #9: Consider the equilibrium, 2 $PCl_3(g) + O_2(g) \rightleftharpoons 2 POCl_3(g)$.

FIVE (5) problems follow: NOTE: You Must show all of your work to receive credit.

Prosotor B=/ber sotor Stage use tak = Hotor

(12) 1. The Enthalpy of Vaporization, Δ_{vap}H, of decane is 51. kJ/mol, and the vapor pressure of liquid decane is 50 torr at 100 °C.

Calculate the normal boiling point of decane, in °C

-Rh(Ph) = -ARD (# -17)
-Rh(Ph) = -ARD (# -17)
-Rh(Ph) = -ARD (Ph) = 373R - 0.0083/ADA (POO)
= 2.001×10 R'-41.413×10 4 R' = 2.240×10 R'

The 2 1200×13 R' = 446 R -273 2 1738/

(15) 2. The vapor pressure of liquid toluene, $C_6H_5CH_3(I)$, is 85.5. torr at 40 °C A sample of solid napthalene, $C_{10}H_8(s)$, is added to 800 grams of liquid toluene. The vapor pressure of the mixture is 80.0 torr at 30 °C.

How many grams of napthalene are contained in the mixture.

Ptol 2 / 2 | Ptol = 80 = 0.936

Mel 2 Roy x lyl = 8.691 ml.

Hel & Byl - Eluph Nap

had the trung the = had

nup X = Note (1-X)

0.936 Prop = 8.696 (1-0.936) = 0.556

Phys 20,595 ml.

muss = 0.595 Wx 1289 pl

= 76.19 lap

(12) 3. Consider the gas-phase equilibrium, $3A \stackrel{K}{\rightleftharpoons} 2B + 2C$

If one starts with 4 moles of A and 3 moles of C (no B) in a vessel, and the reaction is allowed to come to equilibrium, the mixture contains 1.3 mol of A at a total pressure of 4.0 bar.

Calculate the equilibrium constant, K, for this reaction.

no = x; 0.165 0.228 0.608

X: Pas=Pi 0.66 bar. 0.9/2 bar. 2.432 bar.

4.0 X"=

(14) 4. Consider the gas-phase dissociation equilibrium, $A(g) \xleftarrow{\kappa} 2B(g) + 2C(g)$ The equilibrium constant for this dissociation is 5.0×10^{-8} .

Calculate the fraction dissociation, α , at a total pressure of 5. bar.

Note: You may assume that $\alpha \ll 1$

Pad = No (1-4) +2419+2210

= Xigg. / 2x 2x

Xi Pal = Pe-

50 10 L 10 X

X:5 1

K25×10 = PBPD = (10x) (10x) = 2000 d4

A = 5×108

2×103 = 2,5×10-11

2-625 x10-11 14 = 0.0022 = [0.002]

- (17) 5. Consider the gas phase equilibrium reaction: $PCl_3(g) + Cl_2(g) \longleftrightarrow PCl_5(g)$. The equilibrium constant for this reaction is K = 100. at 150 °C. The Enthalpy Change for this reaction is $\Delta_r H^\circ = -88$ kJ/mol at 150 °C
 - (8) (a) Calculate the $\Delta_r S^o$ at 150 °C , in J/mol-K.

26° z - RTh K = -8,31/423) h(100) = -16,1905 fel.

JG 2 5/1 13(0

0 25° = 24°-26°

= -88,000 T/J - (-16,190 T/L)

= (-170 TAK)

5. (Cont'd)

Consider the gas phase equilibrium reaction: $PCl_3(g) + Cl_2(g) \longleftrightarrow PCl_5(g)$. The equilibrium constant for this reaction is K = 100. at 150 °C.

(9) (b) The Enthalpy change for this reaction is temperature dependent, and is given by $\Delta_r H^o = a + b/T$, where a = -272 kJ/mol, $b = +7.8 \times 10^4$ kJ-K/mol.

Calculate the value of the equilibrium constant, K, at 300 °C

$$\frac{dnk}{dt} = \frac{3h^{0}}{Ar^{1}}$$

$$\frac{dnk}{dt} = \frac{3h^{0}}{Ar^{1}}$$

$$\frac{dnk}{dt} = \frac{5n}{4} + \frac{6h}{6} + \frac{1}{7}$$

$$= \frac{6}{7} + \frac{1}{7} + \frac{6}{2} + \frac{1}{7} + \frac$$