INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}=0.00831 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K}$
$1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J}$
$1 \mathrm{~L}-\mathrm{bar}=100 \mathrm{~J}$
$1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J}$
$1 \mathrm{bar}=100 \mathrm{kPa}$
1 bar = 750 torr
1 atm $=760$ torr
$1 \mathrm{kPa}=7.50$ torr

Molar Masses $\quad \mathrm{C}_{10} \mathrm{H}_{8}-128$.
$\mathrm{C}_{6} \mathrm{H}_{6}-78$.
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}-342$. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}-92$.

CHEM 5200-Exam 3 - November 7, 2017

Name \qquad

(30) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. When 0.90 moles of $\mathrm{Cl}_{2}(\mathrm{~g})$ are mixed with 0.40 moles of $\mathrm{O}_{2}(\mathrm{~g})$ at $150^{\circ} \mathrm{C}$, the Gibbs Energy of mixing, $\Delta \mathrm{Gmix}_{\text {m }}$, is approximately:
(A) -1.6 kJ
(B) -2.1 kJ
(C) -2.2 kJ
(D) -2.8 kJ
2. Consider a mixture of two liquids, A and B. When 6.0 moles of A and 4.0 moles of B are mixed together, the volume of the solution is $700 \mathrm{~cm}^{3}$. The Partial Molar Volume of A is $80 . \mathrm{cm}^{3} / \mathrm{mol}$. Therefore, the Partial Molar Volume of B is approximately:
(A) $55 \mathrm{~cm}^{3} / \mathrm{mol}$
(B) $220 \mathrm{~cm}^{3} / \mathrm{mol}$
(C) $63 \mathrm{~cm}^{3} / \mathrm{mol}$
(D) Cannot be determined without the density of the solution
3. When 90 grams of napthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$, is dissolved in 200 grams of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ ($\mathrm{T}_{\mathrm{b}}{ }^{\circ}=80^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{b}}=2.5^{\circ} \mathrm{C} / \mathrm{m}$), the boiling point of the solution is
(A) $88.8^{\circ} \mathrm{C}$
(B) $71.2^{\circ} \mathrm{C}$
(C) $81.8^{\circ} \mathrm{C}$
(D) $108.8^{\circ} \mathrm{C}$
4. When 20 grams of an unknown compound is dissolved in 150 grams of water $\left(\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$, the freezing point of the solution is $-3.5^{\circ} \mathrm{C}$. What is the Molar Mass of the unknown compound?
(A) $10.6 \mathrm{~g} / \mathrm{mol}$
(B) $124 \mathrm{~g} / \mathrm{mol}$
(C) $71 . \mathrm{g} / \mathrm{mol}$
(D) $45 \mathrm{~g} / \mathrm{mol}$
5. When a sample of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is dissolved in 12.0 L of aqueous solution at $40^{\circ} \mathrm{C}$, the osmotic pressure of the solution is 80 . torr. Aproximately how many grams of sucrose are dissolved in the solution?
(A) 0.12 g
(B) 16.8 g
(C) 1.4 g
(D) 52.3 g

For \#6 - \#9: Consider the equilibrium, $2 \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{POCl}_{3}(\mathrm{~g})$.
The enthalpy change for this reaction is -510 kJ .
The value of the equilibrium constant at $100^{\circ} \mathrm{C}$ is 0.04 .
6. For the above reaction, if the temperature is decreased, then
(A) the equilibrium will move to the left and K will decrease
(B) the equilibrium will move to the right and K will increase
(C) the equilibrium will move to the left and K will remain constant
(D) the equilibrium will move to the right and K will remain constant
7. For the above reaction, if $\mathrm{N}_{2}(\mathrm{~g})$ is added at constant total pressure, then
(A) the equilibrium will move to the left and K will decrease
(B) the equilibrium will move to the right and K will increase
(C) the equilibrium will move to the left and K will remain constant
(D) the equilibrium will move to the right and K will remain constant
8. What is the approximate value of $\Delta \mathrm{G}$ for the above reaction at $100^{\circ} \mathrm{C}$ when $\mathrm{P}_{\mathrm{PCl} 3}=\mathrm{P}_{\mathrm{O} 2}=2.0 \mathrm{bar}$ and $\mathrm{P}_{\mathrm{POCl} 3}=0.2 \mathrm{bar}$?
(A) -6.4 kJ
(B) +10.0 kJ
(C) -26.4 kJ
(D) +16.4 kJ
9. What is the approximate value of the equilibrium constant for the above reaction at $120^{\circ} \mathrm{C}$?
(A) 2.3×10^{3}
(B) 170
(C) 2.3×10^{-4}
(D) 9.2×10^{-6}
10. Consider the gas phase equilibrium, $A(g) \stackrel{K}{\rightleftarrows} 2 B(g)$. When the pressures of A and B are each 0.10 bar at $100^{\circ} \mathrm{C}$, the Gibbs Energy change for the reaction is -5.0 kJ . What is the approximate value of the equilibrium constant?
(A) 0.5
(B) 2.0
(C) 5.0
(D) 0.2

FIVE (5) problems follow: NOTE: You Must show all of your work to receive credit.
(12) 1. The Enthalpy of Vaporization, $\Delta_{\mathrm{vap}} \mathrm{H}$, of decane is $51 . \mathrm{kJ} / \mathrm{mol}$, and the vapor pressure of liquid decane is 50 torr at $100^{\circ} \mathrm{C}$.

Calculate the normal boiling point of decane, in ${ }^{\circ} \mathrm{C}$
(15) 2. The vapor pressure of liquid toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}(\mathrm{I})$, is 85.5 . torr at $40{ }^{\circ} \mathrm{C}$ A sample of solid napthalene, $\mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{~s})$, is added to 800 grams of liquid toluene. The vapor pressure of the mixture is 80.0 torr at $30^{\circ} \mathrm{C}$.
How many grams of napthalene are contained in the mixture.
(12) 3. Consider the gas-phase equilibrium, $3 A \stackrel{K}{\rightleftharpoons} 2 B+2 C$

If one starts with 4 moles of A and 3 moles of C (no B) in a vessel, and the reaction is allowed to come to equilibrium, the mixture contains 1.3 mol of A at a total pressure of 4.0 bar.
Calculate the equilibrium constant, K, for this reaction.
(14) 4. Consider the gas-phase dissociation equilibrium, $A(g) \stackrel{K}{\rightleftarrows} 2 B(g)+2 C(g)$

The equilibrium constant for this dissociation is 5.0×10^{-8}.
Calculate the fraction dissociation, α, at a total pressure of 5. bar.
Note: You may assume that $\alpha \ll 1$
(17) 5. Consider the gas phase equilibrium reaction: $\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows P C l_{5}(\mathrm{~g})$. The equilibrium constant for this reaction is $\mathrm{K}=100$. at $150^{\circ} \mathrm{C}$. The Enthalpy Change for this reaction is $\Delta_{r} \mathrm{H}^{\circ}=-88 \mathrm{~kJ} / \mathrm{mol}$ at $150{ }^{\circ} \mathrm{C}$
(8) (a) Calculate the $\Delta_{r} \mathrm{~S}^{\circ}$ at $150^{\circ} \mathrm{C}$, in $\mathrm{J} / \mathrm{mol}-\mathrm{K}$.

5. (Cont'd)

Consider the gas phase equilibrium reaction: $P C l_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows P C l_{5}(g)$. The equilibrium constant for this reaction is $\mathrm{K}=100$. at $150^{\circ} \mathrm{C}$.
(9) (b) The Enthalpy change for this reaction is temperature dependent, and is given by $\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=\mathrm{a}+\mathrm{b} / \mathrm{T}$, where $\mathrm{a}=-272 \mathrm{~kJ} / \mathrm{mol}, \mathrm{b}=+7.8 \times 10^{4} \mathrm{~kJ}-\mathrm{K} / \mathrm{mol}$.

Calculate the value of the equilibrium constant, K , at $300^{\circ} \mathrm{C}$

