CHEM 5200 - Exam 3 - November 7, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 8.31 J/mol-K = 8.31 kPa-L/mol-K = 0.00831 kJ/mol-K 1 L-atm = 101 J 1 L-bar = 100 J 1 kPa-L = 1 J 1 bar = 100 kPa 1 bar = 750 torr 1 atm = 760 torr 1 kPa = 7.50 torr

Molar Masses	C ₁₀ H ₈ - 128.	C ₆ H ₆ - 78.	C ₁₂ H ₂₂ O ₁₁ - 342.
	C ₆ H₅CH ₃ - 92.		

CHEM 5200 - Exam 3 - November 7, 2017

Name_____

(30) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

- 1. When 0.90 moles of $Cl_2(g)$ are mixed with 0.40 moles of $O_2(g)$ at 150 °C, the Gibbs Energy of mixing, ΔG_{mix} , is approximately:
 - (A) -1.6 kJ (B) -2.1 kJ (C) -2.2 kJ (D) -2.8 kJ
- 2. Consider a mixture of two liquids, A and B. When 6.0 moles of A and 4.0 moles of B are mixed together, the volume of the solution is 700 cm³. The Partial Molar Volume of A is 80. cm³/mol. Therefore, the Partial Molar Volume of B is approximately:
 - (A) 55 cm³/mol (B) 220 cm³/mol (C) 63 cm³/mol
 - (D) Cannot be determined without the density of the solution
- 3. When 90 grams of napthalene, C₁₀H₈, is dissolved in 200 grams of benzene, C₆H₆ (T_b°=80 °C, K_b=2.5 °C/m), the boiling point of the solution is
 - (A) 88.8 °C (B) 71.2 °C (C) 81.8 °C (D) 108.8 °C
- 4. When 20 grams of an unknown compound is dissolved in 150 grams of water $(K_f = 1.86 \text{ }^{\circ}\text{C/m})$, the freezing point of the solution is -3.5 °C. What is the Molar Mass of the unknown compound?
 - (A) 10.6 g/mol (B) 124 g/mol (C) 71. g/mol (D) 45 g/mol
- 5. When a sample of sucrose (C₁₂H₂₂O₁₁) is dissolved in 12.0 L of aqueous solution at 40 °C, the osmotic pressure of the solution is 80. torr. Aproximately how many grams of sucrose are dissolved in the solution?
 - (A) 0.12 g (B) 16.8 g (C) 1.4 g (D) 52.3 g

For #6 - #9: Consider the equilibrium, 2 $PCI_3(g) + O_2(g) \rightleftharpoons$ 2 $POCI_3(g)$. The enthalpy change for this reaction is -510 kJ.

The value of the equilibrium constant at 100 °C is 0.04 .

- 6. For the above reaction, if the temperature is **decreased**, then
 - (A) the equilibrium will move to the left and K will decrease
 - (B) the equilibrium will move to the right and K will increase
 - (C) the equilibrium will move to the left and K will remain constant
 - (D) the equilibrium will move to the right and K will remain constant
- 7. For the above reaction, if $N_2(g)$ is added at constant total pressure, then
 - (A) the equilibrium will move to the left and K will decrease
 - (B) the equilibrium will move to the right and K will increase
 - (C) the equilibrium will move to the left and K will remain constant
 - (D) the equilibrium will move to the right and K will remain constant
- 8. What is the approximate value of ΔG for the above reaction at 100 °C when $P_{PCI3} = P_{O2} = 2.0$ bar and $P_{POCI3} = 0.2$ bar?
 - (A) -6.4 kJ (B) +10.0 kJ (C) -26.4 kJ (D) +16.4 kJ
- 9. What is the approximate value of the equilibrium constant for the above reaction at 120 °C?
 - (A) 2.3x10³ (B) 170 (C) 2.3x10⁻⁴ (D) 9.2x10⁻⁶
- 10. Consider the gas phase equilibrium, $A(g) \xleftarrow{\kappa}{\longrightarrow} 2 B(g)$. When the pressures of A and B are each 0.10 bar at 100 °C, the Gibbs Energy change for the reaction is -5.0 kJ. What is the approximate value of the equilibrium constant?
 - (A) 0.5 (B) 2.0 (C) 5.0 (D) 0.2

FIVE (5) problems follow: NOTE: You Must show all of your work to receive credit.

(12) 1. The Enthalpy of Vaporization, $\Delta_{vap}H$, of decane is 51. kJ/mol, and the vapor pressure of liquid decane is 50 torr at 100 °C.

Calculate the normal boiling point of decane, in °C

(15) 2. The vapor pressure of liquid toluene, $C_6H_5CH_3(I)$, is 85.5. torr at 40 °C A sample of solid napthalene, $C_{10}H_8(s)$, is added to 800 grams of liquid toluene. The vapor pressure of the mixture is 80.0 torr at 30 °C.

How many grams of napthalene are contained in the mixture.

(12) 3. Consider the gas-phase equilibrium, $3A \xrightarrow{\kappa} 2B + 2C$

If one starts with 4 moles of A and 3 moles of C (no B) in a vessel, and the reaction is allowed to come to equilibrium, the mixture contains 1.3 mol of A at a total pressure of 4.0 bar.

Calculate the equilibrium constant, K, for this reaction.

(14) 4. Consider the gas-phase dissociation equilibrium, $A(g) \xleftarrow{\kappa}{\leftarrow} 2B(g) + 2C(g)$ The equilibrium constant for this dissociation is 5.0x10⁻⁸. Calculate the fraction dissociation, α , at a total pressure of 5. bar. **Note: You may assume that** $\alpha << 1$

- (17) 5. Consider the gas phase equilibrium reaction: $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$. The equilibrium constant for this reaction is K = 100. at 150 °C. The Enthalpy Change for this reaction is $\Delta_r H^\circ = -88 \text{ kJ/mol at 150 °C}$
 - (8) (a) Calculate the $\Delta r S^{\circ}$ at 150 °C , in J/mol-K.

5. (Cont'd)

Consider the gas phase equilibrium reaction: $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$. The equilibrium constant for this reaction is K = 100. at 150 °C.

(9) (b) The Enthalpy change for this reaction is temperature dependent, and is given by

 $\Delta r H^{o} = a + b/T$, where a = -272 kJ/mol, $b = +7.8 \times 10^{4} \text{ kJ-K/mol}$.

Calculate the value of the equilibrium constant, K, at 300 °C