INFORMATION PAGE (Use for reference and for scratch paper)

## Constants and Conversion Factors:

$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}=0.00831 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K}$
$1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J}$
$1 \mathrm{~L}-\mathrm{bar}=100 \mathrm{~J}$
$1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J}$
$1 \mathrm{bar}=100 \mathrm{kPa}$
1 bar = 750 torr
1 atm $=760$ torr
$1 \mathrm{kPa}=7.50$ torr

The relation between the Molar Mass (M), density ( $\rho$ ) and Molar Volume ( $\mathrm{V}_{\mathrm{m}}$ ) of a material is: $\rho=\frac{M}{V_{m}}$

## CHEM 5200 - Exam 3 - November 1, 2018

Name $\qquad$

## (36) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. Consider a mixture of two liquids, $A$ and $B$. When 8.0 moles of $A$ and 4.0 moles of $B$ are mixed together, the volume of the solution is $700 \mathrm{~cm}^{3}$. The Partial Molar Volume of $B$ is $80 . \mathrm{cm}^{3} / \mathrm{mol}$. Therefore, the Partial Molar Volume of $A$ is approximately:
(A) $48 \mathrm{~cm}^{3} / \mathrm{mol}$
(B) $15 \mathrm{~cm}^{3} / \mathrm{mol}$
(C) $62 \mathrm{~cm}^{3} / \mathrm{mol}$
(D) Cannot be determined without the density of the solution
2. The vapor pressure of $\mathrm{CCl}_{4}$ is 54.6 kPa at $60^{\circ} \mathrm{C}$. When an unknown amount of an organic solid is dissolved in 5.0 moles of $\mathrm{CCl}_{4}$, the vapor pressure above the solution at $60^{\circ} \mathrm{C}$ is 50.6 kPa . Approximately how many moles of the solid were dissolved in the $\mathrm{CCl}_{4}$ ?
(A) 0.27 mol
(B) 0.40 mol
(C) 0.083 mol
(D) Insufficient information. The Molar Mass of the organic solid is needed.
3. When a sample of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{M}=180)$, is dissolved in 600 grams of water $\left(\mathrm{K}_{\mathrm{b}}=0.5^{\circ} \mathrm{C} / \mathrm{m}\right)$, the boiling point is raised to $100.8^{\circ} \mathrm{C}$. Approximately how many grams of glucose are in the sample?
(A) 290 g
(B) 480 g
(C) 220 g
(D) 170 g
 the freezing point of the solution is $-2.20^{\circ} \mathrm{C}$. The Molar Mass of the compound is approximately
(A) $58 \mathrm{~g} / \mathrm{mol}$
(B) $86 \mathrm{~g} / \mathrm{mol}$
(C) $105 \mathrm{~g} / \mathrm{mol}$
(D) $43 \mathrm{~g} / \mathrm{mol}$
4. When a solution of an unknown compound is prepared by putting 10 grams of an unknown compound into 500 mL of solution, the osmotic pressure of the solution is 1.0 bar at $25^{\circ} \mathrm{C}$. The Molar Mass of the unknown compound is approximately
(A) $250 \mathrm{~g} / \mathrm{mol}$
(B) $5,000 \mathrm{~g} / \mathrm{mol}$
(C) $500 \mathrm{~g} / \mathrm{mol}$
(D) $50,000 \mathrm{~g} / \mathrm{mol}$
5. The boiling point of pure toluene is $111.0^{\circ} \mathrm{C}$ and the Boiling Point Elevation Constant is $3.40^{\circ} \mathrm{C} / \mathrm{m}$. When 25 grams a compound, $A\left(\mathrm{M}_{\mathrm{A}}=100\right)$, is dissolved in 500 grams of Toluene, the boiling point of the solution is $113.2^{\circ} \mathrm{C}$. Therefore, the activity coefficient of the compound $\left(\gamma_{\mathrm{A}}\right)$ in the solution is approximately:
(A) 1.3
(B) 0.65
(C) 0.8
(D) Insufficient data to determine activity coefficient
6. Consider the gas phase equilibrium, $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}$

For the above reaction, if $\mathrm{N}_{2}(\mathrm{~g})$ is added to the container at constant pressure,
(A) the equilibrium will move to the left and K will remain constant
(B) the equilibrium will move to the right and K will remain constant
(C) the equilibrium will be unchanged and K will remain constant
(D) the equilibrium will move to the left and $K$ will decrease

For \#8 - \#9: Consider the gas phase equilibrium, $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$. At $25^{\circ} \mathrm{C}$, the Gibbs Energies of Formation of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are $+51.3 \mathrm{~kJ} / \mathrm{mol}$ and $+97.9 \mathrm{~kJ} / \mathrm{mol}$, respectively.
8. The value of the equilibrium constant, K , for the above reaction at $25^{\circ} \mathrm{C}$, is approximately:
(A) $6.7 \times 10^{-9}$
(B) 0.15
(C) $1.5 \times 10^{+8}$
(D) 6.7
9. The value of $\Delta \mathrm{G}$ for the above reaction at $25^{\circ} \mathrm{C}$ when the pressures of $\mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ are 0.3 bar and 5.0 bar, respectively, is approximately:
(A) +2.3 kJ
(B) +5.2 kJ
(C) +14.6 kJ
(D) -2.3 kJ
10. Consider the gas phase equilibrium, $2 A(g) \stackrel{K}{\rightleftarrows} B(g)$. When the pressures of A and $B$ are each 0.10 bar at $100^{\circ} \mathrm{C}$, the Gibbs Energy change for the reaction is +0.70 kJ . What is the approximate value of the equilibrium constant at $100^{\circ} \mathrm{C}$ ?
(A) 1.3
(B) 10.0
(C) 8.0
(D 0.13
11. The gas phase molecule, $A$, dissociates according to the equilibrium, $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$. The equilibrium constant is $3 \times 10^{-3}$. If one puts an initial pressure of 6 . bar of $A$ into a flask, what is the approximate pressure of $B$ at equilibrium? [NOTE: You may assume that very little A dissociates]
(A) 0.33 bar
(B) 0.17 bar
(C) 0.13 bar
(D) 0.52 bar
12. Consider the gas phase equilibrium, $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})$. If one puts 2.0 moles of A (no B initially) into a container and the system is allowed to reach equilibrium, it is found that the equilibrium mixture contains 1.2 moles of $A$ at a total pressure of 3.0 bar. The value of the equiibrium constant is approximately:
(A) 0.3
(B) 2.3
(C) 0.8
(D) 6.8

## FIVE (5) problems follow: NOTE: You Must show your work to receive credit.

(12) 1. The densities of solid and liquid Chromium [ $M=52$.$] are 7.1 \mathrm{~g} / \mathrm{mL}$ and $6.4 \mathrm{~g} / \mathrm{mL}$, respectively. The normal melting point of Chromium is $1907^{\circ} \mathrm{C}$. When a pressure of 800 atm. is applied to Chromium, its melting point rises to $1914{ }^{\circ} \mathrm{C}$

Use the above data to calculate the Enthalpy of Fusion of Chromium, kJ/mol.
(12) 2. The normal boiling point of iodobenzene is $188^{\circ} \mathrm{C}$ and the vapor pressure is 40 . torr at $90^{\circ} \mathrm{C}$. Calculate the Enthalpy of Vaporization, $\Delta_{\mathrm{vap}} \mathrm{H}^{\circ}$ of iodobenzene (in $\mathrm{kJ} / \mathrm{mol}$ )
(14). 3. Consider the mixing of two ideal gases, Ethane and Butane. Determine the following quantities when 120 grams of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})[\mathrm{M}=30]$, and 120. grams of $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})[\mathrm{M}=58]$, are mixed together at $85^{\circ} \mathrm{C}$.
(10) (a) The Gibbs Energy of Mixing, $\Delta_{\text {mix }} G$ (in kJ)
(4) (b) The Enthalpy of Mixing, $\Delta_{\text {mix }} \mathrm{H}$ (in kJ)
(12) 4. Consider the gas phase dissociation equilibrium, $A(g) \stackrel{K}{\rightleftarrows} 3 B(g)+C(g)$. At $25^{\circ} \mathrm{C}$, the percent dissociation of $A$ is $40 \%$ at a total pressure of 3.0 bar. Calculate the equilibrium constant, K.
Note: You cannot assume that very little A reacts.
(14) 5. Consider the gas phase equilibrium: $2 A(g) \stackrel{K}{\rightleftarrows} B(g)+C(g)$.

The equilibrium constant for this reaction Is $\mathrm{K}=2.0$
If one starts with pure $A$ at an initial pressure of 5.0 bar (and no $B$ or $C$ initially), calculate the pressures of $A$ and $B$ at equilibrium.
Notes: 1. You Cannot assume that very little $B$ and $C$ react.
2. However, it should not be necessary to use the quadratic equation for this problem.

