CHEM 5200 - Exam 4 - November 30, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors: F = 96,500 C/mol 1 C-Volt = 1 J R = 8.31 J/mol-K = 0.00831 kJ/mol-K R = 8.31 C-V/mol-K = 8.31 kPa-L/mol-K 1 L-atm = 101 J 1 L-bar = 100 J 1 kPa-L = 1 J 1 bar = 100 kPa1 bar = 750 torr

1 atm = 760 torr

The Nernst Equation: $E_{cell} = E_{cell}^o - \frac{0.0592}{n} \log(Q) = E_{cell}^o - \frac{RT}{nF} \ln(Q)$

The TST Equation: $k = \frac{RT}{N_A h} e^{\frac{\Delta S^2}{R}} e^{-\frac{\Delta H^2}{RT}}$ R, N_A and h are universal constants: where: $\frac{R}{N_A h} = \frac{8.31}{(6.02x10^{23})(6.63x10^{-34})} = 2.1x10^{10}$ CHEM 5200 - Exam 4 - November 30, 2017

Name_____

(36 points) MULTIPLE CHOICE FOUR (4) points per question (Circle the ONE correct answer)

Consider an electrochemical concentration cell with 3.00x10⁻⁵ M Au(NO₃)₃(aq) in the sample compartment (anode) and 0.50 M Au(NO₃)₃(aq) in the reference compartment (cathode). In standard electrochemical notation, this cell would be denoted: Au(s)|Au³⁺(3.00x10⁻⁵ M)||Au³⁺(0.50 M)|Au(s).

The voltage in this concentration cell (at 25 °C) is approximately:

(A) -0.12 V (B) +0.08 V (C) +0.25 V (C) -0.08 V

- **For #2 #3:** The reduction potential of Cr³⁺ is -0.74 V and the reduction potential of Cu⁺ is +0.34 V.
- What is the equilibrium constant, K, for the electrochemical reaction given by Cu|Cu⁺||Cr³⁺|Cr ?
 - (A) 1.9x10⁻⁵⁵ (B) 1.8x10⁺¹⁸ (C) 5.7x10⁻¹⁹ (D) 5.4x10⁻¹⁸
- 3. What is the approximate cell potential for the reaction, Cu(s)|Cu⁺(2.50 M)||Cr³⁺(1.0x10⁻⁴ M)|Cr(s), where the concentrations of the aqueous species are given in parentheses?
 - (A) +0.98 V (B) -0.50 V (C) -0.98 V (D) -1.18 V
- 4. The reaction, $A \rightarrow P$, is of order "x"; the initial rate is given by $r_0 = k[A]_0^x$. When the initial concentration is $[A]_0 = 0.50$ M, $r_0 = 50.0$ M/min. When $[A]_0 = 0.30$ M, $r_0 = 64.5$ M/min. Therefore, the reaction order, x, is:
 - (A) -1/2 (B) +1/2 (C) +3/2 (D) -3/2
- 5. The reaction, $A \rightarrow Products$, is of order "3/2"; i.e. rate = k[A]^{3/2}. When $[A_0]$ = 0.10 M, the half-life of the reaction is 500 s. When $[A]_0$ = 0.15 M, the half life of the reaction is approximately:
 - (A) 920 s (B) 410 s (C) 610 s (D) 270 s

6. Consider the competitive first order reactions, $A \xrightarrow{k_1} B$ and $A \xrightarrow{k_2} C$

In a kinetics experiment, it was found that, when $[A]_0 = 0.60$ M, then at the completion of the reaction, the final concentration of C (as $t \rightarrow \infty$) is $[C]_{\infty} = 0.15$ M. In a separate experiment, it was determined that the **second** rate constant is $k_2 = 20$ s⁻¹.

What is the approximate value of the first rate constant, k1?

- (A) $60. s^{-1}$ (B) $6.7. s^{-1}$ (C) $80. s^{-1}$ (D) $5.0 s^{-1}$
- 7. When a Transition State Theory Analysis was carried out on temperature dependent rate constant data, it was determined that the intercept and slope of the plot of ln(k/T) vs. 1/T were +19.5 and -4810. K, respectively. What is the approximate Entropy of Activation, ΔS^{\ddagger} , for this reaction?

(A) -40 kJ/mol (B) +40 J/mol-K (C) +43.7 J/mol-K (D) -35.5 kJ/mol

For #8 - #9: In the collision theory of bimolecular gas phase reactions, the rate constant, k, is of the form: $k = C\sqrt{T}e^{-\frac{E_0}{RT}}$, where C is a constant and E₀ is the "Threshold Energy".

- 8. If one has rate constants, ks, as a function of temperature, T, what would one plot in order to obtain a straight line using this theory?
 - (A) $\ln(k)vs. 1/T$ (B) $\ln(k \cdot \sqrt{T})vs. 1/T$ (C) $\ln\left(\frac{k}{\sqrt{T}}\right)vs. 1/T$ (D) $\ln\left(\frac{k}{T^{3/2}}\right)vs. 1/T$
- If a given reaction is of the form given above, and you are told that the "Threshold Energy" is E₀ = 80 kJ/mol, then at 1200 °C, the Arrhenius Activation Energy, E_a is approximately:

(A) 92.2 kJ/mol (B) 86.1 kJ/mol (C) 73.9 kJ/mol (D) 67.8 kJ/mol

Four (4) problems follow: NOTE: You Must show all of your work to receive credit.

(14) 1. The solubility product of silver chromate, Ag_2CrO_4 , is $1.1x10^{-12}$.

An electrochemical cell is prepared with 0.60 M AgNO₃(aq) in the reference compartment (cathode) and a saturated solution of silver chromate, Ag₂CrO₄(aq), in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: Ag(s)|Ag⁺(xx M)||Ag⁺(0.60 M)|Ag(s).

Calculate the voltage in the electrochemical cell.

(18) 2. A hypothetical electrochemical reaction, $A(s) + 3 B^+(aq) \rightarrow A^{3+}(aq) + 3 B(s)$, has a standard electrochemical cell potential that is temperature dependent and given by:

$$E_{cell}^{0} = a - \frac{b}{T}$$
, where a = 0.12 V and b = +15 V•K

For this reaction, calculate $\Delta_r G^{\circ}$ (in kJ), $\Delta_r H^{\circ}$ (in kJ), and $\Delta_r S^{\circ}$ (in J/K), at 30 °C.

(17) 3. Consider a reaction, $A \rightarrow$ Products, which is 3/2 order with respect to [A];

i.e.
$$Rate = -\frac{d[A]}{dt} = k[A]^{3/2}$$

When the initial concentration is $[A]_0 = 0.70$ M, it takes 80 seconds from the start of the reaction for the concentration of A to decrease to 0.45 M

(11) (a) Calculate the rate constant for this reaction. **SHOW UNITS**

(6) (b) If one starts the reaction with [A]₀ = 0.70 M, what is the approximate concentration, [A], 120 s after the start of the reaction.
Note: If you don't like yoru answer to part (a), use k = 0.009 M^{-1/2}s⁻¹

(15) 4. Consider a first order reaction for which the half-life is $t_{1/2} = 0.45$ s at 60 °C and $t_{1/2} = 0.08$ s at 100 °C.

Calculate the Arrhenius parameters, A (in s^{-1}) and E_a (in kJ/mol) for this reaction.