CHEM 5200 - Exam 4 - November 30, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

F $=96,500 \mathrm{C} / \mathrm{mol}$
1 C -Volt $=1 \mathrm{~J}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=0.00831 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K}$
$\mathrm{R}=8.31 \mathrm{C}-\mathrm{V} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}$
$1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J}$
$1 \mathrm{~L}-\mathrm{bar}=100 \mathrm{~J}$
$1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J}$
$1 \mathrm{bar}=100 \mathrm{kPa}$
1 bar = 750 torr
1 atm $=760$ torr

The Nernst Equation: $\quad E_{\text {cell }}=E_{\text {cell }}^{o}-\frac{0.0592}{n} \log (Q)=E_{\text {cell }}^{o}-\frac{R T}{n F} \ln (Q)$

The TST Equation: $k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} \mathrm{R}, \mathrm{N}_{\mathrm{A}}$ and h are universal constants:
where: $\frac{R}{N_{A} h}=\frac{8.31}{\left(6.02 \times 10^{23}\right)\left(6.63 \times 10^{-34}\right)}=2.1 \times 10^{10}$

CHEM 5200 - Exam 4 - November 30, 2017

Name \qquad

(36 points) MULTIPLE CHOICE FOUR (4) points per question (Circle the ONE correct answer)

1. Consider an electrochemical concentration cell with $3.00 \times 10^{-5} \mathrm{M} \mathrm{Au}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$ in the sample compartment (anode) and $0.50 \mathrm{M} \mathrm{Au}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$ in the reference compartment (cathode). In standard electrochemical notation, this cell would be denoted: $\mathrm{Au}(\mathrm{s})\left|A u^{3+}\left(3.00 \times 10^{-5} \mathrm{M}\right)\right|\left|A u^{3+}(0.50 \mathrm{M})\right| \mathrm{Au}(\mathrm{s})$.
The voltage in this concentration cell (at $25^{\circ} \mathrm{C}$) is approximately:
(A) -0.12 V
(B) +0.08 V
(C) +0.25 V
(C) -0.08 V

For \#2 - \#3: The reduction potential of Cr^{3+} is -0.74 V and the reduction potential of Cu^{+}is +0.34 V .
2. What is the equilibrium constant, K , for the electrochemical reaction given by $\mathrm{Cu}\left|\mathrm{Cu}^{+}\right|\left|\mathrm{Cr}^{3+}\right| \mathrm{Cr}$?
(A) 1.9×10^{-55}
(B) $1.8 \times 10^{+18}$
(C) 5.7×10^{-19}
(D) 5.4×10^{-18}
3. What is the approximate cell potential for the reaction, $\mathrm{Cu}(\mathrm{s})\left|\mathrm{Cu}^{+}(2.50 \mathrm{M})\right|\left|\mathrm{Cr}^{3+}\left(1.0 \times 10^{-4} \mathrm{M}\right)\right| \mathrm{Cr}(\mathrm{s})$, where the concentrations of the aqueous species are given in parentheses?
(A) +0.98 V
(B) -0.50 V
(C) -0.98 V
(D) -1.18 V
4. The reaction, $A \rightarrow P$, is of order " x "; the initial rate is given by $r_{0}=k[A]_{0}{ }^{x}$. When the initial concentration is $[A]_{0}=0.50 \mathrm{M}, r_{0}=50.0 \mathrm{M} / \mathrm{min}$. When $[A]_{0}=0.30 \mathrm{M}$, $r_{0}=64.5 \mathrm{M} / \mathrm{min}$. Therefore, the reaction order, x, is:
(A) $-1 / 2$
(B) $+1 / 2$
(C) $+3 / 2$
(D) $-3 / 2$
5. The reaction, $A \rightarrow$ Products, is of order " $3 / 2$ "; i.e. rate $=k[A]^{3 / 2}$. When $\left[A_{\circ}\right]=0.10 \mathrm{M}$, the half-life of the reaction is 500 s . When $[A]_{0}=0.15 \mathrm{M}$, the half life of the reaction is approximately:
(A) 920 s
(B) 410 s
(C) 610 s
(D) 270 s
6. Consider the competitive first order reactions, $A \xrightarrow{k_{1}} B$ and $A \xrightarrow{k_{2}} C$ In a kinetics experiment, it was found that, when $[A]_{0}=0.60 \mathrm{M}$, then at the completion of the reaction, the final concentration of $C($ as $t \rightarrow \infty)$ is $[C]_{\infty}=0.15 \mathrm{M}$. In a separate experiment, it was determined that the second rate constant is $\mathrm{k}_{2}=20 \mathrm{~s}^{-1}$.

What is the approximate value of the first rate constant, k_{1} ?
(A) $60 . \mathrm{s}^{-1}$
(B) $6.7 . \mathrm{s}^{-1}$
(C) $80 \cdot \mathrm{~s}^{-1}$
(D) $5.0 \mathrm{~s}^{-1}$
7. When a Transition State Theory Analysis was carried out on temperature dependent rate constant data, it was determined that the intercept and slope of the plot of $\ln (\mathrm{k} / \mathrm{T})$ vs. $1 /$ T were +19.5 and -4810 . K, respectively. What is the approximate Entropy of Activation, $\Delta \mathrm{S}^{\ddagger}$, for this reaction?
(A) $-40 \mathrm{~kJ} / \mathrm{mol}$
(B) $+40 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) $+43.7 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(D) $-35.5 \mathrm{~kJ} / \mathrm{mol}$

For \#8 - \#9: In the collision theory of bimolecular gas phase reactions, the rate constant, k , is of the form: $k=C \sqrt{T} e^{-\frac{E_{0}}{R T}}$, where C is a constant and E_{0} is the "Threshold Energy".
8. If one has rate constants, ks , as a function of temperature, T , what would one plot in order to obtain a straight line using this theory?
(A) $\ln (k) v s \cdot 1 / T$
(B) $\ln (k \cdot \sqrt{T}) v s .1 / T$
(C) $\ln (k / \sqrt{T}) v s .1 / T$
(D) $\ln \left(k / T^{3 / 2}\right) v s .1 / T$
9. If a given reaction is of the form given above, and you are told that the "Threshold Energy" is $\mathrm{E}_{0}=80 \mathrm{~kJ} / \mathrm{mol}$, then at $1200^{\circ} \mathrm{C}$, the Arrhenius Activation Energy, E_{a} is approximately:
(A) $92.2 \mathrm{~kJ} / \mathrm{mol}$
(B) $86.1 \mathrm{~kJ} / \mathrm{mol}$
(C) $73.9 \mathrm{~kJ} / \mathrm{mol}$
(D) $67.8 \mathrm{~kJ} / \mathrm{mol}$
(14) 1. The solubility product of silver chromate, $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$, is 1.1×10^{-12}. An electrochemical cell is prepared with $0.60 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$ in the reference compartment (cathode) and a saturated solution of silver chromate, $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$, in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: $\mathrm{Ag}(\mathrm{s})\left|\mathrm{Ag}^{+}(\mathrm{xx} \mathrm{M})\right|\left|\mathrm{Ag}^{+}(0.60 \mathrm{M})\right| \mathrm{Ag}(\mathrm{s})$.
Calculate the voltage in the electrochemical cell.
(18) 2. A hypothetical electrochemical reaction, $A(s)+3 B^{+}(a q) \rightarrow A^{3+}(a q)+3 B(s)$, has a standard electrochemical cell potential that is temperature dependent and given by:

$$
E_{\text {cell }}^{0}=a-\frac{b}{T}, \text { where } \mathrm{a}=0.12 \mathrm{~V} \text { and } \mathrm{b}=+15 \mathrm{~V} \cdot \mathrm{~K}
$$

For this reaction, calculate $\Delta_{r} G^{\circ}$ (in kJ), $\Delta_{r} \mathrm{H}^{\circ}($ in kJ$)$, and $\Delta_{r} \mathrm{~S}^{\circ}($ in $\mathrm{J} / \mathrm{K})$, at $30^{\circ} \mathrm{C}$.
(17) 3. Consider a reaction, $A \rightarrow$ Products, which is $3 / 2$ order with respect to [A];
i.e. \quad Rate $=-\frac{d[A]}{d t}=k[A]^{3 / 2}$

When the initial concentration is $[\mathrm{A}]_{\mathrm{o}}=0.70 \mathrm{M}$, it takes 80 seconds from the start of the reaction for the concentration of A to decrease to 0.45 M
(a) Calculate the rate constant for this reaction. SHOW UNITS
(6) (b) If one starts the reaction with $[\mathrm{A}]_{0}=0.70 \mathrm{M}$, what is the approximate concentration, $[\mathrm{A}], 120 \mathrm{~s}$ after the start of the reaction.
Note: If you don't like yoru answer to part (a), use $k=0.009 \mathrm{M}^{-1 / 2} \mathrm{~s}^{-1}$
(15) 4. Consider a first order reaction for which the half-life is $\mathrm{t}_{1 / 2}=0.45 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$ and $\mathrm{t}_{1 / 2}=0.08 \mathrm{~s}$ at $100^{\circ} \mathrm{C}$.

Calculate the Arrhenius parameters, $\mathrm{A}\left(\mathbf{i n ~}^{-1}\right)$ and $\mathrm{E}_{\mathrm{a}}(\mathbf{i n ~} \mathbf{k J} / \mathbf{m o l})$ for this reaction.

