CHEM 5200 - Exam 4 - November 29, 2018

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

F = 96,500 C/mol

1 C-Volt = 1 J

R = 8.31 J/mol-K = 0.00831 kJ/mol-K

R = 8.31 C-V/mol-K = 8.31 kPa-L/mol-K

1 L-atm = 101 J

1 L-bar = 100 J

1 kPa-L = 1 J

1 bar = 100 kPa

1 bar = 750 torr

1 atm = 760 torr

The Nernst Equation: $E_{cell} = E_{cell}^o - \frac{0.0592}{n} \log(Q) = E_{cell}^o - \frac{RT}{nF} \ln(Q)$

CHEM 5200 - Exam 4 - November 29, 2018 Name

(33 points) MULTIPLE CHOICEn (3 pts. per question)

1.	Consider the gas phase equilibrium,	$2POBr_3(g) \longrightarrow 2PBr_3(g) + O_2(g)$.	The enthalpy
	change for this reaction is +120 kJ		

For the above reaction, if the temperature is decreased,

- (A) the equilibrium will move to the left and K will decrease
 - (B) the equilibrium will move to the right and K will increase
 - (C) the equilibrium will move to the left and K will remain constant
 - (D) the equilibrium will move to the right and K will remain constant
- 2. Consider an electrochemical concentration cell with 0.30 M Mg(NO₃)₂(aq) in the reference compartment (cathode) and an unknown concentration (X M) of Mg(NO₃)₂(aq) in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: Mg(s)|Mg²⁺(X M)||Mg²⁺(0.30 M)|Mg(s).

The voltage in this concentration cell (at 25 °C) is +0.160 Volts. The Mg(NO₃)₂(aq) concentration in the sample compartment is approximately:

- (A) 3.9x10⁻⁶ M
- (B) 2.4x10⁻⁸ M
- (C) 1.2x10⁻⁶ M
- (D) 5.9x10

For #3 - #4: The reduction potential of Al³⁺ is -1.66 V and the reduction potential of Mn²⁺ is -1.18 V.

- 3. What is the equilibrium constant, K, for the electrochemical reaction given by Mn|Mn²⁺||Al³⁺|Al (at 25 °C)?
 - A) 4.7x10⁻²⁵
- (B) 2.2x10⁻⁴⁹
- (C) 4.5x10⁺⁴⁸
- (D) 7.8x10⁻⁹
- 4. What is the approximate cell potential at 25 °C for the reaction, Mn(s)|Mn²⁺(2.0x10⁻⁵ M)||Al³⁺(2.0 M)|Al(s) where the concentrations of the aqueous species are given in parentheses?
 - (A) -0..63 V
- (B) +0.33 V
- (C) +0.63 V
- (D) -0.33 V
- 5. Consider a second order reaction: $\frac{d[A]}{dt} = -k[A]^2$. When the initial concentration is $[A]_0 = 0.60$ M, the concentration decreases to 0.15 M 25 seconds after the start of the reaction. Therefore the rate constant is approximately:
 - (A) $0.10 \text{ M}^{-1}\text{s}^{-1}$
- (B) 0.17 M⁻¹s⁻¹
- © 0.20 M⁻¹s⁻¹
- (D) 0.08 M⁻¹s⁻¹

Four (4) problems follow: NOTE: You Must show your work to receive credit.

Consider the hypothetical gas phase equilibrium reaction: $A(g) \xrightarrow{K} B(g) + C(g)$. The equilibrium constant, K, for this reaction is 2.5 at 300 °C and 140. at 600 °C Calculate the Enthalpy Change for this reaction, $\Delta_r H^o$, in kJ/mol, and the Entropy Change, ∆rSo, in J/mol-K. - () = - sho / 1 / 7 Shoz - Rhky = -8131 9/0 k/n (3.5) = 55780 The = 55,8 AT JG=2-ATMK, =-8-31/8>3)4(2.4) =-43(3 TM) = IN TACO 35°= 24°-26° = 55780-(-4363) 573 = YOS Ther

L. 2148

12,22,5

Gel same SSO if Use Kg & To

(14) 2. An electrochemical cell is prepared with 0.10 M AgNO₃(aq) in the reference compartment (cathode) and a saturated solution of silver arsenate, Ag₃AsO₄(aq), in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: Ag(s)|Ag⁺(xx M)|Ag⁺(0.10 M)|Ag(s).

The measured cell voltage is +0.26 V.

Calculate the Solubility Product, Ksp, of Ag₃AsO₄.

Tale
$$[1g^4]$$
: $A_5^{\dagger}(0,10m) = A_5^{\dagger}(x \times m)$
 $+0.26 = E_{cos}^2 = 0 - \frac{0.892}{1} \left[\frac{8x}{0.10m} \right] = \left[\frac{1}{0.40m} \right] = \frac{1}{0.40} \left[0.20 \right]$
 $\left[\frac{4x}{0.10} \right] = -439 \times \frac{xx}{0.10} = 10 = 24.06 \times 0^{-5} M$
 $\left[\frac{1}{0.40} \right] = \frac{1}{0.10} = \frac{1}{0.40} \left[\frac{1}{0.40} \right] = 4.06 \times 10^{-5} M$

ale Ksp Ag 3 AsOy = 3/19 + AsOy 35

 $\begin{aligned}
& \left[\sum_{i=1}^{n} \left(\frac{2}{3} \right)^{2} = \frac{1}{3} \left(\frac{4}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right) \\
& \left[\sum_{i=1}^{n} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \right] \\
& = \left[\frac{2}{3} \left(\frac{2}{3} \right)^{2} \left(\frac{2}$

- A hypothetical electrochemical reaction, $3 \text{ A(s)} + 2 \text{ B}^{3+} \text{ (s)} \rightarrow 3 \text{ A}^{2+} \text{(aq)} + 2 \text{ B(s)}$, has (16) 3. a standard electrochemical cell potential that is temperature dependent and given by: $E_{cell}^0 = a + bT^{1/2}$ where a = +0.026 V and $b = 5.1 \times 10^{-3}$ V/K^{1/2} (T is temperature in Kelvin)
 - (8) (a) Calculate the equilibrium constant, K, for this reaction at 25 °C E= = a+ b 12 +0.026V +(5./403 V/2)(298 K) 2 = 0.11412

$$= 6.040$$

$$= 6.040$$

$$= 6.040$$

$$= 6.040$$

$$= 6.040$$

$$= 6.040$$

$$= 6.040$$

$$= 6.049$$

$$= 6.049$$

$$= 6.049$$

$$= 6.049$$

$$= 6.049$$

$$= 6.049$$

$$= 6.049$$

$$= 6.049$$

(8) (b) Calculate the Enthalpy change, ∆rHo (in kJ), for this reaction at 25 oC.

SG=-nFfoz-6/96, (00 Caff) (0.144) = -66,000 C.V/1. - -16000 TZ1

88°= NF (0+ = NF (0+ = 67-12) = NFB = 6 (96,500 C/O)(5.1 ×103 V/K) = 685,5 T/K

J6°244°-725°

14°2 26°+ T 25°= -66,000 T/0 + 298 K(855 T/A-K)

= -40,500 PM = [-40.5 ATAL/

(21) 4. Consider a reaction, $A \rightarrow Products$, which is of fourth order with respect to [A];

i.e.
$$Rate = -\frac{d[A]}{dt} = k[A]^4$$

(12) (a) When the initial concentration is $[A]_0 = 0.60$ M, the half-life of the reaction is 45 s

-3 [173 m73] = -26

15173 - L323 = 43 Kb

= - \frac{1}{3} \sum \frac{1}{107} = \frac{1}{

JAG COM 1 & STS was SA36M & 4 SGS

3+ [5/13 5/13] = 3(483) [6.3am 3 6.60m]

B=0.24 m=351/

b=0.24m-35-1

4. Continued.

Note: For parts (b) and (c), If you don't like your answer to part (a), use $k = 0.20 \, \text{M}^{-3}\text{s}^{-1}$

(5) (b) If one starts the reaction with $[A]_0 = 0.60$ M, what is the concentration, $[A]_0 = 0.60$ M after the start of the reaction.

517=0.60M +=1505 [17=?

$$\frac{1}{5\pi7^{3}} = \frac{1}{5\pi7^{3}} + 3 Rt = \frac{1}{(0.60m)^{3}} + 3 (0.46m^{3})/(60s)$$

$$= 112.6 m^{-3}$$

$$\frac{1}{5\pi7^{2}} = (12.6m^{-3})/3 = 4.83 m^{-1}$$

$$\frac{1}{5\pi7^{2}} = \frac{1}{4.83m^{-1}} = 0.21 m$$

(4) (c) What is the half-life of the reaction when $[A]_0 = 0.40 \text{ M}$?

5A7=4040=0.20M