CHEM 5200 - Exam 4 - November 29, 2018

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors: F = 96,500 C/mol 1 C-Volt = 1 J R = 8.31 J/mol-K = 0.00831 kJ/mol-K R = 8.31 C-V/mol-K = 8.31 kPa-L/mol-K 1 L-atm = 101 J 1 L-bar = 101 J 1 kPa-L = 1 J 1 bar = 100 kPa1 bar = 750 torr

1 atm = 760 torr

The Nernst Equation: $E_{cell} = E_{cell}^o - \frac{0.0592}{n} \log(Q) = E_{cell}^o - \frac{RT}{nF} \ln(Q)$

CHEM 5200 - Exam 4 - November 29, 2018

Name_____

(33 points) MULTIPLE CHOICEn (3 pts. per question)

1. Consider the gas phase equilibrium, $2POBr_3(g) \rightleftharpoons 2PBr_3(g) + O_2(g)$. The enthalpy change for this reaction is +120 kJ

For the above reaction, if the temperature is decreased,

- (A) the equilibrium will move to the left and K will decrease
- (B) the equilibrium will move to the right and K will increase
- (C) the equilibrium will move to the left and K will remain constant
- (D) the equilibrium will move to the right and K will remain constant
- Consider an electrochemical concentration cell with 0.30 M Mg(NO₃)₂(aq) in the reference compartment (cathode) and an unknown concentration (X M) of Mg(NO₃)₂(aq) in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: Mg(s)|Mg²⁺(X M)||Mg²⁺(0.30 M)|Mg(s).

The voltage in this concentration cell (at 25 °C) is +0.160 Volts. The $Mg(NO_3)_2(aq)$ concentration in the sample compartment is approximately:

- (A) 3.9x10⁻⁶ M (B) 2.4x10⁻⁸ M (C) 1.2x10⁻⁶ M (D) 5.9x10
- **For #3 #4:** The reduction potential of Al³⁺ is -1.66 V and the reduction potential of Mn²⁺ is -1.18 V.
- What is the equilibrium constant, K, for the electrochemical reaction given by Mn|Mn²⁺||Al³⁺|Al (at 25 °C) ?
 - A) 4.7x10⁻²⁵ (B) 2.2x10⁻⁴⁹ (C) 4.5x10⁺⁴⁸ (D) 7.8x10⁻⁹
- 4. What is the approximate cell potential at 25 °C for the reaction, Mn(s)|Mn²⁺(2.0x10⁻⁵ M)||Al³⁺(2.0 M)|Al(s) where the concentrations of the aqueous species are given in parentheses?
 - (A) -0..63 V (B) +0.33 V (C) +0.63 V (D) -0.33 V
- 5. Consider a second order reaction: $\frac{d[A]}{dt} = -k[A]^2$. When the initial concentration is $[A]_0 = 0.60$ M, the concentration decreases to 0.15 M 25 seconds after the start of the reaction. Therefore the rate constant is approximately:
 - (A) $0.10 \text{ M}^{-1}\text{s}^{-1}$ (B) $0.17 \text{ M}^{-1}\text{s}^{-1}$ (C) $0.20 \text{ M}^{-1}\text{s}^{-1}$ (D) $0.08 \text{ M}^{-1}\text{s}^{-1}$

For #6 - #7: Consider the reaction, $A \rightarrow P$, which is a zeroth order reaction; i.e. $\frac{d[A]}{dt} = -k$. The rate constant for this reaction is $k = 0.02 \text{ Ms}^{-1}$, and the initial concentration of A is 0.90 M.

6.	The half-life of this reaction is approximately			
	(A) 16 s	(B) 23 s	(C) 56 s	(D) 35 s
7.	The concentration of [A] 30 s after the start of the reaction is approximately			

(A) 0.49 M (B) 0.62 M (C) 0.18 M (D) 0.30 M

For #8 - #9: The reaction, $A \rightarrow P$, is of order "x"; therefore, the initial rate is $r_0=k[A]_0^x$. When $[A]_0= 0.2 \text{ M}$, $r_0= 0.0100 \text{ M s}^{-1}$. When $[A]_0= 0.5 \text{ M}$, $r_0= 0.156 \text{ M s}^{-1}$.

- (A) 3.0 (B) 2.5 (C) 2.0 (D) 4.0
- 9. What is the approximate value of the rate constant, k, for this reaction?

8. What is the order of this reaction, x?

- (A) $0.25 \text{ M}^{-1} \text{ s}^{-1}$ (B) $6.25 \text{ M}^{-3} \text{ s}^{-1}$ (C) $1.25 \text{ M}^{-2} \text{ s}^{-1}$ (D) $0.56 \text{ M}^{-3/2} \text{ s}^{-1}$
- 10. The reaction, $A \rightarrow Products$, is of order "x"; i.e. rate = k[A]^x. When $[A_o]$ = 0.1 M, the half-life of the reaction is 300 s. When $[A]_o$ = 0.3 M, the half life of the reaction is 173 s. The order of the reaction, x, is
 - (A) -1/2 (B) 2 (C) 1/2 (D) 3/2
- 11. Consider the competitive first order reactions, $A \xrightarrow{k_1} B$ and $A \xrightarrow{k_2} C$

It is known that the ratio of the two first order rate constants for a pair of competitive reactions is: $\frac{k_2}{k_1} = 1.50$. When a kinetics experiment is performed with the initial concentration, [A]_o = 0.80 M, the approximate concentration of B at the conclusion of the reaction, (i.e. [B]_∞), will be:

(A) 0.40 M (B) 0.32 M (C) 0.53 M (D) 0.48 M

.....

Four (4) problems follow: NOTE: You Must show your work to receive credit.

(16) 1. Consider the hypothetical gas phase equilibrium reaction: $A(g) \xleftarrow{K} B(g) + C(g)$. The equilibrium constant, K, for this reaction is 2.5 at 300 °C and 140. at 600 °C

Calculate the Enthalpy Change for this reaction, $\Delta_r H^o$, in kJ/mol, and the Entropy Change, $\Delta_r S^o$, in J/mol-K.

(14) 2. An electrochemical cell is prepared with 0.10 M AgNO₃(aq) in the reference compartment (cathode) and a saturated solution of silver arsenate, Ag₃AsO₄(aq), in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: Ag(s)|Ag⁺(xx M)||Ag⁺(0.10 M)|Ag(s).

The measured cell voltage is +0.26 V.

Calculate the Solubility Product, K_{sp}, of Ag₃AsO₄.

- (16) 3. A hypothetical electrochemical reaction, $3 A(s) + 2 B^{3+}(s) \rightarrow 3 A^{2+}(aq) + 2 B(s)$, has a standard electrochemical cell potential that is temperature dependent and given by: $E_{cell}^0 = a + bT^{1/2}$ where a = +0.026 V and $b = 5.1 \times 10^{-3}$ V/K^{1/2} (T is temperature in Kelvin)
 - (8) (a) Calculate the equilibrium constant, K, for this reaction at 25 °C

(8) (b) Calculate the Enthalpy change, $\Delta r H^{\circ}$ (in kJ), for this reaction at 25 °C.

(21) 4. Consider a reaction, $A \rightarrow$ Products, which is of fourth order with respect to [A];

i.e.
$$Rate = -\frac{d[A]}{dt} = k[A]^4$$

(12) (a) When the initial concentration is $[A]_0 = 0.60$ M, the half-life of the reaction is 45 s Calculate the rate constant for this reaction. **SHOW UNITS**

4. Continued.

Note: For parts (b) and (c), If you don't like your answer to part (a), use k = 0.20 M⁻³s⁻¹

(5) (b) If one starts the reaction with $[A]_0 = 0.60$ M, what is the concentration, [A], 150 s after the start of the reaction.

(4) (c) What is the half-life of the reaction when $[A]_0 = 0.40 \text{ M}$?