CHEM 5200 - Exam 4 - November 29, 2018

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

$$
\begin{aligned}
& \mathrm{F}=96,500 \mathrm{C} / \mathrm{mol} \\
& 1 \mathrm{C}-\mathrm{Volt}=1 \mathrm{~J} \\
& \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=0.00831 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K} \\
& \mathrm{R}=8.31 \mathrm{C}-\mathrm{V} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K} \\
& 1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J} \\
& 1 \mathrm{~L}-\mathrm{bar}=100 \mathrm{~J} \\
& 1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J} \\
& 1 \mathrm{bar}=100 \mathrm{kPa} \\
& 1 \mathrm{bar}=750 \mathrm{torr} \\
& 1 \mathrm{~atm}=760 \mathrm{torr}
\end{aligned}
$$

The Nernst Equation: $\quad E_{\text {cell }}=E_{\text {cell }}^{o}-\frac{0.0592}{n} \log (Q)=E_{\text {cell }}^{o}-\frac{R T}{n F} \ln (Q)$

CHEM 5200 - Exam 4 - November 29, 2018

Name

\qquad

(33 points) MULTIPLE CHOICEn (3 pts. per question)

1. Consider the gas phase equilibrium, $2 \mathrm{POBr}_{3}(g) \rightleftarrows 2 P B r_{3}(g)+O_{2}(g)$. The enthalpy change for this reaction is +120 kJ

For the above reaction, if the temperature is decreased,
(A) the equilibrium will move to the left and K will decrease
(B) the equilibrium will move to the right and K will increase
(C) the equilibrium will move to the left and K will remain constant
(D) the equilibrium will move to the right and K will remain constant
2. Consider an electrochemical concentration cell with $0.30 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ in the reference compartment (cathode) and an unknown concentration (XM) of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: $\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(X \mathrm{M})\right|\left|\mathrm{Mg}^{2+}(0.30 \mathrm{M})\right| \mathrm{Mg}(\mathrm{s})$.

The voltage in this concentration cell (at $25^{\circ} \mathrm{C}$) is +0.160 Volts. The $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ concentration in the sample compartment is approximately:
(A) $3.9 \times 10^{-6} \mathrm{M}$
(B) $2.4 \times 10^{-8} \mathrm{M}$
(C) $1.2 \times 10^{-6} \mathrm{M}$
(D) 5.9×10

For \#3 - \#4: The reduction potential of Al^{3+} is -1.66 V and the reduction potential of Mn^{2+} is -1.18 V .
3. What is the equilibrium constant, K , for the electrochemical reaction given by $\mathrm{Mn}\left|\mathrm{Mn}^{2+}\right||\mathrm{A}|^{3+} \mid \mathrm{Al}$ (at $25^{\circ} \mathrm{C}$) ?
A) 4.7×10^{-25}
(B) 2.2×10^{-49}
(C) $4.5 \times 10^{+48}$
(D) 7.8×10^{-9}
4. What is the approximate cell potential at $25^{\circ} \mathrm{C}$ for the reaction, $\mathrm{Mn}(\mathrm{s})\left|\mathrm{Mn}^{2+}\left(2.0 \times 10^{-5} \mathrm{M}\right)\right|\left|\mathrm{Al}^{3+}(2.0 \mathrm{M})\right| \mathrm{Al}(\mathrm{s})$ where the concentrations of the aqueous species are given in parentheses?
(A) $-0 . .63 \mathrm{~V}$
(B) +0.33 V
(C) +0.63 V
(D) -0.33 V
5. Consider a second order reaction: $\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\mathrm{k}[\mathrm{A}]^{2}$. When the initial concentration is $[A]_{0}=0.60 \mathrm{M}$, the concentration decreases to 0.15 M 25 seconds after the start of the reaction. Therefore the rate constant is approximately:
(A) $0.10 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
(B) $0.17 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
(C) $0.20 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
(D) $0.08 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

For \#6 - \#7: Consider the reaction, $\mathrm{A} \rightarrow \mathrm{P}$, which is a zeroth order reaction;
i.e. $\frac{d[A]}{d t}=-k$. The rate constant for this reaction is $\mathrm{k}=0.02 \mathrm{Ms}^{-1}$, and the initial concentration of A is 0.90 M .
6. The half-life of this reaction is approximately
(A) 16 s
(B) 23 s
(C) 56 s
(D) 35 s
7. The concentration of $[\mathrm{A}] 30 \mathrm{~s}$ after the start of the reaction is approximately
(A) 0.49 M
(B) 0.62 M
(C) 0.18 M
(D) 0.30 M

For \#8-\#9: The reaction, $A \rightarrow P$, is of order " x "; therefore, the initial rate is $r 0=k[A] 0^{x}$. When $[A]_{0}=0.2 \mathrm{M}, \mathrm{r}_{0}=0.0100 \mathrm{M} \mathrm{s}^{-1}$. When $[\mathrm{A}]_{0}=0.5 \mathrm{M}, \mathrm{r}_{0}=0.156 \mathrm{M} \mathrm{s}^{-1}$.
8. What is the order of this reaction, x ?
(A) 3.0
(B) 2.5
(C) 2.0
(D) 4.0
9. What is the approximate value of the rate constant, k , for this reaction?
(A) $0.25 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
(B) $6.25 \mathrm{M}^{-3} \mathrm{~s}^{-1}$
(C) $1.25 \mathrm{M}^{-2} \mathrm{~s}^{-1}$
(D) $0.56 \mathrm{M}^{-3 / 2} \mathrm{~s}^{-1}$
10. The reaction, $A \rightarrow$ Products, is of order " x "; i.e. rate $=k[A]^{x}$. When $\left[A_{0}\right]=0.1 \mathrm{M}$, the half-life of the reaction is 300 s . When $[\mathrm{A}]_{0}=0.3 \mathrm{M}$, the half life of the reaction is 173 s . The order of the reaction, x , is
(A) $-1 / 2$
(B) 2
(C) $1 / 2$
(D) $3 / 2$
11. Consider the competitive first order reactions, $A \xrightarrow{k_{1}} B$ and $A \xrightarrow{k_{2}} C$ It is known that the ratio of the two first order rate constants for a pair of competitive reactions is: $\mathrm{k}_{2} / \mathrm{k}_{1}=1.50$. When a kinetics experiment is performed with the initial concentration, $[\mathrm{A}]_{\mathrm{o}}=0.80 \mathrm{M}$, the approximate concentration of B at the conclusion of the reaction, (i.e. $\left.[B]_{\infty}\right)$, will be:
(A) 0.40 M
(B) 0.32 M
(C) 0.53 M
(D) 0.48 M
(16) 1. Consider the hypothetical gas phase equilibrium reaction: $\mathrm{A}(g) \stackrel{K}{\rightleftarrows} B(g)+\mathrm{C}(\mathrm{g})$. The equilibrium constant, K , for this reaction is 2.5 at $300^{\circ} \mathrm{C}$ and 140 . at $600^{\circ} \mathrm{C}$ Calculate the Enthalpy Change for this reaction, $\Delta_{r} \mathrm{H}^{\circ}$, in $\mathrm{kJ} / \mathrm{mol}$, and the Entropy Change, $\Delta_{r} \mathrm{~S}^{\circ}$, in $\mathrm{J} / \mathrm{mol}-\mathrm{K}$.
(14) 2. An electrochemical cell is prepared with $0.10 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$ in the reference compartment (cathode) and a saturated solution of silver arsenate, $\mathrm{Ag}_{3} \mathrm{AsO}_{4}(\mathrm{aq})$, in the sample compartment (anode). In standard electrochemical notation, this cell would be denoted: $\mathrm{Ag}(\mathrm{s})\left|\mathrm{Ag}^{+}(\mathrm{xx} \mathrm{M})\right|\left|\mathrm{Ag}^{+}(0.10 \mathrm{M})\right| \mathrm{Ag}(\mathrm{s})$.
The measured cell voltage is +0.26 V .

Calculate the Solubility Product, K_{sp}, of $\mathrm{Ag}_{3} \mathrm{AsO}_{4}$.
(16) 3. A hypothetical electrochemical reaction, $3 A(s)+2 B^{3+}(s) \rightarrow 3 A^{2+}(a q)+2 B(s)$, has a standard electrochemical cell potential that is temperature dependent and given by: $E_{\text {cell }}^{0}=a+b T^{1 / 2}$ where $\mathrm{a}=+0.026 \mathrm{~V}$ and $\mathrm{b}=5.1 \times 10^{-3} \mathrm{~V} / \mathrm{K}^{1 / 2}$
(T is temperature in Kelvin)
(8) (a) Calculate the equilibrium constant, K , for this reaction at $25^{\circ} \mathrm{C}$
(8) (b) Calculate the Enthalpy change, $\Delta_{r} \mathrm{H}^{\circ}$ (in kJ), for this reaction at $25^{\circ} \mathrm{C}$.
(21) 4. Consider a reaction, $A \rightarrow$ Products, which is of fourth order with respect to $[A]$; i.e. \quad Rate $=-\frac{d[A]}{d t}=k[A]^{4}$
(a) When the initial concentration is $[A]_{0}=0.60 \mathrm{M}$, the half-life of the reaction is 45 s Calculate the rate constant for this reaction. SHOW UNITS

4. Continued.

Note: For parts (b) and (c), If you don't like your answer to part (a), use $k=0.20 \mathrm{M}^{-3} \mathrm{~s}^{-1}$
(5)
(b) If one starts the reaction with $[A]_{0}=0.60 \mathrm{M}$, what is the concentration, $[A], 150 \mathrm{~s}$ after the start of the reaction.
(4) (c) What is the half-life of the reaction when $[A]_{0}=0.40 \mathrm{M}$?

