CHEM 5200 - Final Exam - December 14, 2017

INFORMATION PAGE (Use for reference and for scratch paper)

Constants and Conversion Factors:

$$
\begin{array}{ll}
\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}=0.00831 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K} \\
1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J} & 1 \mathrm{~L}-\mathrm{bar}=100 \mathrm{~J} \\
1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J} & 1 \mathrm{bar}=100 \mathrm{kPa} \\
1 \mathrm{~atm}=760 \text { torr } & 1 \mathrm{bar}=750 \mathrm{torr}
\end{array}
$$

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{V, m}} \quad \text { or } \quad \frac{p_{2}}{p_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{C_{p, m} / C_{V, m}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}
$$

Photochemistry

Singlet State Lifetime: $\tau_{0}=\frac{1}{k_{0}}=\frac{1}{k_{F}+k_{I C}+k_{I S C}}$

Fluorence Quantum Yield (No quencher):
$\Phi_{F, 0}=\frac{k_{F}}{k_{F}+k_{I C}+k_{\text {ISC }}}=\frac{k_{F}}{k_{0}}$
Fluorescence Quantum Yield (quencher, Q, present):
$\Phi_{F}=\frac{k_{F}}{k_{F}+k_{l C}+k_{l S C}+k_{Q}[Q]}=\frac{k_{F}}{k_{0}+k_{Q}[Q]}$
Light Energy/Wavelength Relation: $E_{\rho h}=h \nu=\frac{h c}{\lambda(m)}=\frac{1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}}{\lambda(\mathrm{~m})}$

CHEM 5200 - Final Exam - December 15, 2016

Name \qquad

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting

(60) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. Solid Tungsten hexacarbonyl, $\mathrm{W}(\mathrm{CO})_{6}(\mathrm{~s})$ can be decomposed to $\mathrm{W}(\mathrm{s})$ and $\mathrm{CO}(\mathrm{g})$ at high temperature. What is the work involved when two (2) moles of $\mathrm{W}(\mathrm{CO})_{6}(\mathrm{~s})$ are decomposed at $150^{\circ} \mathrm{C}$ and 1 bar pressure.?
(A) +21.1 kJ
(B) -42.2 kJ
(C) -21.1 kJ
(D) -10.5 kJ

For \#2 - \#3: Consider five(5) moles of a perfect gas initially at a temperature of $200^{\circ} \mathrm{C}$ and volume 30 L . The gas has a constant volume molar heat capacity, $\mathrm{C}_{\mathrm{V}, \mathrm{m}}=26.0 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. The gas undergoes a reversible, adiabatic compression to a final volume of 10 L (corresponding to a final temperature of $400^{\circ} \mathrm{C}$)
2. The work, w , for this process is approximately:
(A) $+11, \mathrm{~kJ}$
(B) +5 . kJ
(C) +26 kJ
(D) $-11 . \mathrm{kJ}$
3. The Enthalpy change, $\Delta \mathrm{H}$, for this process is approximately:
(A) $+34 . \mathrm{kJ}$
(B) $-18 . \mathrm{kJ}$
(C) $+14 . \mathrm{kJ}$
(D) $+18 . \mathrm{kJ}$
4. The Entropy change for this process, $\Delta \mathrm{S}$, is approximately:
(A) $-14.2 \mathrm{~J} / \mathrm{K}$
(B) $0 \mathrm{~J} / \mathrm{K}$
(C) $+14.2 \mathrm{~J} / \mathrm{K}$
(D) None of the above

For \#5- \#7: Consider three (3) moles of benzene gas at its normal boiling point of $80^{\circ} \mathrm{C}$. The enthalpy of vaporization of benzene is $34.0 \mathrm{~kJ} / \mathrm{mol}$
5. What is the work involved when 3 moles of benzene gas are condensed to liquid at $80^{\circ} \mathrm{C}$ and 1 bar pressure?
(A) +12.3 kJ
(B) -8.8 kJ
(C) -2.9 kJ
(D) +8.8 kJ
6. What is the internal energy change, $\Delta \mathrm{U}$, when 3 moles of benzene gas are condensed to the liquid at $80^{\circ} \mathrm{C}$ and 1 bar pressure?
(A) -25.2 kJ
(B) -93.2 kJ
(C) -102.0 kJ
(D) -110.8 kJ
7. What is the entropy change of the system when 3 moles of benzene gas are condensed to the liquid at $80^{\circ} \mathrm{C}$ and 1 bar pressure?
(A) $+289 \mathrm{~J} / \mathrm{K}$
(B) $-96.3 \mathrm{~J} / \mathrm{K}$
(C) $+72.4 \mathrm{~J} / \mathrm{K}$
(D) $-289 \mathrm{~J} / \mathrm{K}$
8. The normal melting point of toluene is $-95^{\circ} \mathrm{C}$. The Enthalpy of Fusion of toluene is $6.6 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change of the surroundings, $\Delta \mathrm{S}_{\text {surr }}$, when one(1) mole of liquid toluene crystallizes to solid toluene at $-95^{\circ} \mathrm{C}$?
(A) $-37 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(B) $-48.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(C) $+69 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(D) $+37 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

For \#9-\#11: Consider the gas phase equilibrium, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. For this reaction, the equilibrium constant is $\mathrm{K}=1.3 \times 10^{-4}$ at $400^{\circ} \mathrm{C}$. The enthalpy change for this reaction is $\Delta_{r} \mathrm{H}^{\circ}=-92.0 \mathrm{~kJ}$ (independent of temperature)
9. What is the entropy change, $\Delta \mathrm{S}^{0}$, for this reaction (independent of temperature).
(A) $+62.4 \mathrm{~J} / \mathrm{K}$
(B) $+211 \mathrm{~J} / \mathrm{K}$
(C) $-211 \mathrm{~J} / \mathrm{K}$
(D) $-62.4 \mathrm{~J} / \mathrm{K}$
10. What is $\Delta \mathrm{G}$ for this reaction at $400^{\circ} \mathrm{C}$ when $\mathrm{P}_{\mathrm{N} 2}=\mathrm{P}_{\mathrm{H} 2}=3.0$ bar and $\mathrm{P}_{\mathrm{NH} 3}=0.2$ bar?
(A) -42.6 kJ
(B) +7.5 kJ
(C) +24.7 kJ
(D) +92.6 kJ
11. What is the value of the equilibrium constant, K , at $150^{\circ} \mathrm{C}$?
(A) 2.2
(B) 8.4×10^{-3}
(C) 1.7×10^{4}
(D) 7.9×10^{-9}
12. Consider the gas phase equilibrium, $A(g) \stackrel{K}{\rightleftarrows} 2 B(g)$. When the pressures of A and B are each 0.20 bar at $100^{\circ} \mathrm{C}$, the Gibbs Energy change for the reaction is -10.0 kJ . What is the approximate value of the equilibrium constant?
(A) $5, .0$
(B) 45.
(C) 0.3
(D) 12.7
13. Consider the gas phase equilibrium, $2 A \rightleftarrows B$. If one starts with 3 moles of A and 3 moles of B in a vessel, and the reaction goes to equilibrium, the mixture contains 1.4 moles of A at a total pressure of 4 bar. Therefore, the value of the equilibrium constant, K, is approximately:
(A) 10.1
(B) 1.9
(C) 2.5
(D) 0.5

For \#14-\#15: The reaction, $A \rightarrow P$, is of order " x "; therefore, the initial rate is $r_{0}=k[A]_{0}{ }^{x}$. When $[A]_{0}=0.35 \mathrm{M}, \mathrm{r}_{0}=0.120 \mathrm{M} \mathrm{s}^{-1}$. When $[A]_{0}=0.5 \mathrm{M}, \mathrm{r}_{0}=0.418 \mathrm{M} \mathrm{s}^{-1}$.
14. What is the order of this reaction, x ?
(A) $5 / 2$
(B) 3
(C) $7 / 2$
(D) 4
15. What is the approximate value of the rate constant, k , for this reaction?
(A) $2.8 \mathrm{M}^{-2} \mathrm{~s}^{-1}$
(B) $4.7 \mathrm{M}^{-5 / 2} \mathrm{~s}^{-1}$
(C) $1.7 \mathrm{M}^{-3 / 2} \mathrm{~s}^{-1}$
(D) $8.0 \mathrm{M}^{-32} \mathrm{~s}^{-1}$

For \#16-\#17: Consider the reaction, $A \rightarrow P$, which is a third order reaction; i.e. rate $=k[A]^{3}$. The rate constant for this reaction is $k=0.10 \mathrm{M}^{-2} \mathrm{~s}^{-1}$, and the initial concentration of A is 0.40 M .
16. What is the half-life of this reaction?
(A) 94 s
(B) 28 s
(C) 6.9 s
(D) 188 s
17. What will be the concentration of $[A] 25 \mathrm{~s}$ after the start of the reaction.
(A) 0.09 M
(B) 0.26 M
(C) 0.17 M
(D) 0.30 M
18. The reaction, $A \rightarrow P$, is of order " x "; i.e. rate $=k[A]^{x}$. When $\left[A_{0}\right]=0.6 \mathrm{M}$, the half-life of the reaction is 48 . s . When $[A]_{0}=0.2 \mathrm{M}$, the half life of the reaction is 250. s. The order of the reaction, x, is
(A) $3 / 2$
(B) 2
(C) $5 / 2$
(D) 3
19. A reaction, $A_{2}+2 B \rightarrow P$, proceeds by the following two step mechanism:

$$
\begin{array}{ll}
\mathrm{A}_{2} \stackrel{\mathrm{~K}}{\longleftrightarrow} 2 \mathrm{~A} & \text { Fast Pre-Equilibrium, characterized by } \mathrm{K} \\
A+B \xrightarrow{k} \mathrm{P} & \text { Slow RDS, characterized by } \mathrm{k}
\end{array}
$$

The rate law for the formation of product is of the form:
(A) $\mathrm{Keff}\left[\mathrm{A}_{2}\right]^{2}[\mathrm{~B}]$
(B) $\operatorname{keff}\left[\mathrm{A}_{2}\right][\mathrm{B}]$
(C) $\mathrm{keff}\left[\mathrm{A}_{2}\right]^{1 / 2}[\mathrm{~B}]$
(D) $\mathrm{Keff}\left[\mathrm{A}_{2}\right][\mathrm{B}]^{1 / 2}$
20. In a photochemical reaction, $A \rightarrow B+3 C$, the reaction quantum yield for the decomposition of A is $\Phi_{R}=0.30$. When A is irradiated with light at the absorption wavelength,* for a period of time, it is found that 1.5 mol of C is formed.
Approximately how many photons were absorbed by A in this experiment.
*The numerical value of λ is unnecessary to work the question.
(A) 1.0×10^{24}
(B) 3.0×10^{24}
(C) 1.0×10^{23}
(D) 9.0×10^{24}

There are six (6) problems following. You must show your work to receive credit.
(16) 1. A Perfect Gas has a temperature dependent constant pressure molar heat capacity, $C_{p, m}=a-\frac{b}{T}$, with $\mathrm{a}=40 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $\mathrm{b}=8.0 \times 10^{3} \mathrm{~J} / \mathrm{mol}$.
Two (2) moles of this gas, originally at 750 K and 1.5 atm is cooled reversibly at constant volume to 300 K .
(8) (a) Calculate $\Delta \mathrm{U}$ for this process, in kJ
(8) (b) Calculate $\Delta \mathrm{S}$ for this process, in J / K
(14) 2. Consider a hypothetical gas that obeys the equation of state:

$$
p V=n R T+\frac{A}{V}, \text { where } \mathrm{A} \text { is a constant }
$$

If this gas undergoes an isothermal expansion from V_{1} to V_{2}, develop INTEGRATED expressions for $\Delta \mathrm{H}$ and $\Delta \mathrm{G}$ in terms of $\mathrm{n}, \mathrm{R}, \mathrm{T}, \mathrm{A}, \mathrm{V}_{1}$ and V_{2}
(10) 3. Calculate the entropy change of the system, $\Delta \mathbf{S}_{\text {sys }}$, when one (1) mole of liquid lodine freezes irreversibly to the solid at $94^{\circ} \mathrm{C}$.

Information: The normal melting (freezing) point of lodine is $114^{\circ} \mathrm{C}$ The Enthalpy of Fusion is $13.5 \mathrm{~kJ} / \mathrm{mol}$ at $114^{\circ} \mathrm{C}$.
The constant pressure molar heat capacity of liquid lodine is $81 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$ The constant pressure molar heat capacity of solid lodine is $54 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$.
(08) 4. The reaction, $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, has the following mechanism:
$\mathrm{NO}+\mathrm{O}_{2} \underset{k_{-1}}{\stackrel{k_{1}}{\leftrightarrows}} \mathrm{NO}_{3} \quad$ followed by $\mathrm{NO}_{3}+\mathrm{NO} \xrightarrow{k_{2}} 2 \mathrm{NO}_{2}$
NO_{3} is an intermediate present in steady-state concentration.
Use the steady-state approximation on $\left[\mathrm{NO}_{3}\right]$ to develop an expression for the rate of the reaction, Rate $=1 / 2 \mathrm{~d}\left[\mathrm{NO}_{2}\right] / \mathrm{dt}$, as a function of $[\mathrm{NO}],\left[\mathrm{O}_{2}\right]$, $\mathrm{k}_{1}, \mathrm{k}_{-1}$, and k_{2}.
(10) 5. In an experiment to measure the quantum yield of a photochemical reaction, the absorbing substance was exposed to 280 nm radiation from a $120 \mathrm{~W}(\mathrm{~J} / \mathrm{s})$ source for 30 min . The intensity of the transmitted light was 35% that of the incident light. As a result of the irradiation, 0.120 mol of the absorbing substance decomposed.

Determine the reaction quantum yield, Φ_{R}.
(10) 6 . The fluorescence quantum yield for a chromophore dissolved in water is 0.42 . When a quencher is added to the solution, with [Q] $=0.02 \mathrm{M}$, the quantum yield is reduced to 0.18 . Given that the singlet state lifetime is 45 ns , calculate the quenching rate constant, k_{Q}, in $\mathrm{M}^{-1} \mathrm{~s}^{-1}$.

