CHEM 5200 - Final Exam - December 13, 2018

INFORMATION PAGES (Use for reference and for scratch paper)

Constants and Conversion Factors:

R = 8.31 J/mol-K = 8.31 kPa-L/mol-K = 0.00831 kJ/mol-K

1 L-atm = 101 J

1 L-bar = 100 J

1 kPa-L = 1 J

1 bar = 100 kPa

1 atm = 760 torr

1 bar = 750 torr

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R/C_{V,m}} \quad \text{or} \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{C_{p,m}/C_{V,m}} = \left(\frac{V_1}{V_2}\right)^{\gamma}$$

The TST Equation: $k = \frac{RT}{N_A h} e^{\frac{\Delta S^{\pm}}{R}} e^{\frac{\Delta H^{\pm}}{RT}}$ R, N_A and h are universal constants:

where:
$$\frac{R}{N_A h} = \frac{8.31}{(6.02x10^{23})(6.63x10^{-34})} = 2.1x10^{10}$$

Photochemistry equations on following page.

Photochemistry

Singlet State Lifetime:
$$\tau_0 = \frac{1}{k_0} = \frac{1}{k_F + k_{IC} + k_{ISC}}$$

Fluorence Quantum Yield (No quencher):

$$\Phi_{F,0} = \frac{k_F}{k_F + k_{IC} + k_{ISC}} = \frac{k_F}{k_0}$$

Fluorescence Quantum Yield (quencher, Q, present): - NOT NEEDED THIS YEAR

$$\Phi_F = \frac{k_F}{k_F + k_{IC} + k_{ISC} + k_Q[Q]} = \frac{k_F}{k_0 + k_Q[Q]}$$

Light Energy/Wavelength Relation: $E_{ph} = h\nu = \frac{hc}{\lambda(m)} = \frac{1.99 \times 10^{-25} \ J \cdot m}{\lambda(m)}$

CHEM 5200 - Final Exam - December 13, 2018

Name Soluting

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting

(78) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. Dimanganese Decacarbonyl can be decomposed to CO(g) and Mn(s) via the reaction: $Mn_2(CO)_{10}(s) \rightarrow 2Mn(s) + 10CO(g)$

What is the work involved when a sufficient quantity of Mn₂(CO)₁₀(s) is decomposed to form three(3) moles of Mn(s) at 200 °C and 1. bar pressure (in kJ)?

- (A) -59.0 kJ
- (B) -24.9 kJ
- (C) +39.3 kJ
- (D) -39.3 kJ
- 2. The constant volume molar heat capacity of CO₂(g) is constant at C_{V,m} = 28.2 J/mol-K. When 5. moles of CO₂(g) is cooled from 300 °C to 50 °C at a constant pressure of 1. bar, the enthalpy change and work are approximately:
 - (A) $\Delta H = -45.6 \text{ kJ} \text{ & w} = -10.4 \text{ kJ}$
- (B) $\Delta H = -35.3 \text{ kJ } \& \text{ w} = +10.4 \text{ kJ}$
- (C) $\Delta H = -45.6 \text{ kJ } \& \text{ w} = +10.4 \text{ kJ}$
- (D) $\Delta H = -35.3 \text{ kJ} \text{ & w} = -10.4 \text{ kJ}$

For #3 - #4: Consider four(4) moles of a perfect gas initially at a temperature of 300 °C and volume of 20 L. The gas has a **constant volume** molar heat capacity, C_{V,m} = 25.7 J/mol-K. The gas undergoes a **reversible**, **adiabatic** expansion to a final volume of 50 L.

- 3. The work, w, for this process is approximately:
 - (A) -11.8 kJ
- (B) -7.9 kJ
- (C) 0 kJ
- (D) -15.1 kJ
- 4. The Enthalpy change, ΔH_{λ} for this process is approximately:
 - (A) -15.6 kJ
- (B) -20.0 kJ
- (C) -26.4 kJ
- (D) -10.5 kJ

For #5 - #7: The boiling point of p-dibromobenzene is 220 °C and the Enthalpy of Vaporization is 50.0 kJ/mol. Consider the reversible condensation of six(6) moles of p-dibromobenzene at 220 °C and 1 bar pressure.

		220 °C and 1 bar pres		on or oraco		
5.	5. The work, w, for this process is approximately					
	(A) -11.0 kJ	(B) +24.6 kJ	(C) -24.6 kJ	(D) +11.0 kJ		
6.	The Internal Energy change, ΔU , for this process is approximately					
	(A) -325 kJ	(B) +325 kJ	(C) -275 kJ	(D) 0 kJ		
7.	The entropy chan	s approximately				
	(A) -610 J/K	(B) -100 J/K	(C) 0 J/K	(D) +610 J/K		
8.	6.6 kJ/mol. What	g point of toluene is -9 is the approximate en les of liquid toluene cr	tropy change of the	•		
	(A) -54 J/K	(B) -111 J/K	(C) +37 J/K	(D) +111 J/K		
9.	9. When 20 grams of an unknown compound is dissolved in 150 grams of water ($K_f = 1.86$ °C/m), the freezing point of the solution is -3.5 °C. What is the Mola of the unknown compound?					
	(A) 10.6 g/mol	(B) 71. g/mol	(C) 124 g/mol	(D) 45. g/mol		
2	$NO_2(g) + \frac{1}{2}O_2(g)$	ider the gas phase eq $\rightleftharpoons N_2O_5(g)$. The enth ant is 2.5 at 150 °C.		reaction is -170. kJ and		
10. For the above reaction, if $N_2(g)$ is added at a constant total pressure of 5 bar,						
(A) the equilibrium will move to the left and K will decrease						
(B) the equilibrium will move to the right and K will increase (C) the equilibrium will move to the left and K will remain constant						
·		n will move to the righ				
11	. For the above rea	ction, if the temperatu	re is increased,			
(The state of the s	n will move to the left	'			
(B) the equilibrium will move to the right and K will increase						

(C) the equilibrium will move to the left and K will remain constant(D) the equilibrium will move to the right and K will remain constant

Note: The Transition State Theory (TST) equation in on the information sheet.

$$(B) +108.8$$

For #21 - #22: Consider a hypothetical theory of the rate constant, in which k is of the form: $k = CT^{3/2}e^{\frac{E_0}{RT}}$, where C is a constant and E₀ is the "Threshold Energy".

- 21. If one has rate constants, k, as a function of temperature, T, what would one plot in order to obtain a straight line using this theory?
 - (A) ln(k/T) vs. 1/T

(C)
$$ln(k/T^{1/2})$$
 vs. $1/T$

(D)
$$ln(k \bullet T^{3/2})$$
 vs. 1/T

- 22. If a given reaction is of the form given above, and you are told that the **Arrhenius Activation Energy**, **E**_a, is 130. kJ/mol, then at 1000 °C, the "Threshold Energy", **E**₀, is approximately:
 - (A) 117.5 kJ/mol
- (B) 145.9 kJ/mol
- (C) 119.4 kJ/mol

23. For the reaction, 2 BrCl(g) + H₂(g) \rightarrow 2 HCl(g) + Br₂(g), the reaction mechanism is:

$$BrCl(g) + H_2(g) \xrightarrow{K} HBr(g) + HCl(g)$$
 Fast equilibrium

$$HBr(g) + BrCl(g) \xrightarrow{k} HCl(g) + Br_2(g)$$
 Slow step

An acceptable overall rate equation for the formation of Br₂, $\frac{d[Br_2]}{dt}$, is:

(A) Rate =
$$k' \frac{[BrCI]^2[H_2]}{[HCI]}$$

(B)
$$Rate = k'[BrCI][H_2]$$

(C)
$$Rate = k'[HBr][BrCI]$$

(D) Rate =
$$k' \frac{[BrCl][H_2]}{[HCl]}$$

24.	In a photochemical reaction, A \rightarrow 2 B + C, the reaction quantum yield for the decomposition of A is Φ_R = 0.45. A absorbs radiation at a rate of 5.x10 ¹⁹ absorbed photons per second for a total of 90 minutes. Approximately how many moles of B have been formed by the end of the irradiation period?					
	*The numerical value of λ is unnecessary to work the question.					
	(A) 0.10 mol	(B) 0.49 mol	(C) 0.20 mol	(D) 0.40 mol		
Fo	or#25-#26: Inap	ulsed laser fluores	cence experiment	on an organic chromophore		

For #25 - #26: In a **pulsed** laser fluorescence experiment on an organic chromophore, the fluorescence intensity 45 ns after the experiment begins is 70% of the intensity at the start of the experiment.

In a separate steady-state fluoescence experiment, it was determined that the fluorescence rate constant is: $k_F = 3.4 \times 10^6 \text{ s}^{-1}$

- 25. The singlet state lifetime of the chromophore, τ_0 , is approximately:
 - (A) 37 ns
- (B) 126 ns
- (C) 290 ns
- (D) 16 ns
- 26. The fluorescence quantum yield of the chromophore is approximately:
 - (A) 0.43
- (B) 2.3
- (C) 0.68
- (D) 0.13

There are six (6) problems following. You must show your work to receive credit.

(10) 1. A Perfect Gas has a temperature dependent **constant pressure** molar heat capacity, $C_{p,m} = a + bT^2$, with a = 22 J/mol-K and $b = 1.5 \times 10^{-5}$ J/mol-K³.

Three (3) moles of this gas, originally at 600 °C and 1.5 atm is cooled reversible.

Three (3) moles of this gas, originally at 600 °C and 1.5 atm is cooled reversibly at **constant volume** to 200 °C.

Calculate the Internal Energy change, ΔU , for this process, in kJ.

$$C_{y,m} = G_{y,m} - R = a + b T^{2} - R$$

$$= (a - R) + b T^{2} - a + b T^{2}$$

a'= a-R = 22-8.31 = 13.7 Flk

7=600c=873K n=3ml.

Jar = (" namet = (" na" b") at

- na (12-17 + nb [2-13]

= 3ml/375/en (473k-873k) + 3ml(15x055/13) (473) - 1873)3)

= -16440 J+ (-8390 J)

= -24,830T = [-24,8 BT]

Consider a hypothetical gas that obeys the equation of state: (10) 2.

$$p(V-Bp^2) = nRT \longrightarrow \sqrt{2 NRT + Rp^2}$$

(学): 华(学)=-2017 28

If this gas undergoes an isothermal compression from p1 to p2, develop **INTEGRATED** expressions for ΔU and ΔA in terms of n, R, T, B, p_1 and p_2 .

$$\frac{\partial G}{\partial P} = \frac{1}{P} \left(\frac{2}{SP} \right) - \frac{1}{P} \left(\frac{2}{SP} \right) - \frac{1}{P} \left(\frac{2}{SP} \right) = \frac{1}{P} + \frac{1}{2} SP \left(\frac{2}{SP} \right) - \frac{1}{P} \left(\frac{2}{SP} \right) + \frac{1}{P} \left(\frac{2}{SP} \right) - \frac{1}{P} \left(\frac{2}{SP} \right) + \frac{1}{P} \left(\frac{2}{SP} \right) - \frac{1}{P} \left(\frac{2}{SP} \right) + \frac{1}{P} \left(\frac{2}{SP} \right) - \frac{1}{P} \left(\frac{2}{SP} \right) + \frac{1}{P} \left(\frac{2}{$$

(3A) = 0-P(W) = -P(-100T + 2BP) = MRT - 2BP DA= Property of Compt - 2Bp) AP

(10) 3. The normal boiling point of octane is 125 °C.

The Enthalpy of Vaporization of octane is 34.4 kJ/mol at 125 °C.

The constant pressure molar heat capacity of liquid octane is 240. J/mol-K.

The constant pressure molar heat capacity of octane gas is 180 J/mol-K.

Calculate the entropy change of the **Surroundings**, Δ**S**_{surr}, (in J/mol-K) when one (1) mole of super heated liquid octane vaporizes irreversibly at 145 °C.

Mave Sight (1=3984).

New Sup! (1=3984).

Jup 10° (5=48K) = Shot All & Dho De Sup! (1=398K) & Gm/g) [T, -T,]

Gol to Bp=390K Vegory Mab to 418K

= 240 [398-418] + 34.4 ×10 + 180 [418-398]

= -4800 8 + 34,400 T & 3600 (7=418K) = 9848.

75m = -95y = -33, 200 T

25cm = fin = 33200 = - 79.4 To

R,=8500 =323K 12= 3200 5-1 T2# 1500 = 423 t

Consider a first order reaction for which the the rate constant is 85. s⁻¹ at 50 °C and 3200. s-1 at 150 °C.

Calculate the Arrhenius pre-exponential factor, A (in s⁻¹), for this reaction.

In h, - had - sa In for Ind - Eafato

$$hA = h_1 + \frac{F_0}{ET_1} = h_1 + \frac{41,200}{8.31(323)} =$$

$$= 19.79$$

Got same value of A asing kry tz

(10) 5. The reaction, $2B + C \rightarrow P$ (P is the product) proceeds by the following mechanism. $B + C \xrightarrow{k_1 \longrightarrow} I$ followed by $B + I \xrightarrow{k_2 \longrightarrow} P$ "I" is an intermediate present in steady-state concentration. Use the steady-state

"I" is an intermediate present in steady-state concentration. Use the steady-state approximation on [I] to develop an expression for the rate of formation of P as a function of [B], [C], k_1 , k_{-1} and k_2 .

 $\frac{d \left[P \right]}{dt} = k_{2} \left[B \right] \left[T \right] = k_{2} \left[B \right] \left[k_{1} + k_{2} \right] \left[B \right]$ $= \left[\frac{k_{1} k_{2} \left[B \right] T e T}{k_{2} + k_{3} \left[B \right]} \right]$ $= \left[\frac{k_{1} k_{2} \left[B \right] T e T}{k_{2} + k_{3} \left[B \right]} \right]$

stat-ette on [2]

dist = 0 = Libricy - K, [2] - Libriz 7

= Librico - [2](L, + Libris)

3 [IT = L [B][C] N L+L [B]