CHEM 5200 - Final Exam - December 13, 2018

INFORMATION PAGES (Use for reference and for scratch paper)

Constants and Conversion Factors:

$$
\begin{array}{ll}
\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}=0.00831 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K} \\
1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J} & 1 \mathrm{~L}-\mathrm{bar}=100 \mathrm{~J} \\
1 \mathrm{kPa}-\mathrm{L}=1 \mathrm{~J} & 1 \mathrm{bar}=100 \mathrm{kPa} \\
1 \mathrm{~atm}=760 \text { torr } & 1 \mathrm{bar}=750 \mathrm{torr}
\end{array}
$$

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{V, m}} \quad \text { or } \quad \frac{p_{2}}{p_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{C_{p, m} / C_{V, m}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}
$$

The TST Equation: $k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} \mathrm{R}, \mathrm{N}_{\mathrm{A}}$ and h are universal constants:

$$
\text { where: } \frac{R}{N_{A} h}=\frac{8.31}{\left(6.02 \times 10^{23}\right)\left(6.63 \times 10^{-34}\right)}=2.1 \times 10^{10}
$$

Photochemistry

Singlet State Lifetime: $\tau_{0}=\frac{1}{k_{0}}=\frac{1}{k_{F}+k_{I C}+k_{\text {ISC }}}$

Fluorence Quantum Yield (No quencher):
$\Phi_{F, 0}=\frac{k_{F}}{k_{F}+k_{I C}+k_{I S C}}=\frac{k_{F}}{k_{0}}$

Light Energy/Wavelength Relation: $E_{\rho h}=h \nu=\frac{h c}{\lambda(m)}=\frac{1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}}{\lambda(\mathrm{~m})}$

Fluorescence Quantum Yield (quencher, Q, present): NOT NEEDED THIS YEAR
$\Phi_{F}=\frac{k_{F}}{k_{F}+k_{l C}+k_{l S C}+k_{Q}[Q]}=\frac{k_{F}}{k_{0}+k_{Q}[Q]}$

CHEM 5200 - Final Exam - December 13, 2018

Name \qquad

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting

(78) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. Dimanganese Decacarbonyl can be decomposed to $\mathrm{CO}(\mathrm{g})$ and $\mathrm{Mn}(\mathrm{s})$ via the reaction: $\mathrm{Mn}_{2}(\mathrm{CO})_{10}(s) \rightarrow 2 \mathrm{Mn}(\mathrm{s})+10 \mathrm{CO}(\mathrm{g})$

What is the work involved when a sufficient quantity of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}(\mathrm{~s})$ is decomposed to form three(3) moles of $\mathrm{Mn}(\mathrm{s})$ at $200^{\circ} \mathrm{C}$ and 1 . bar pressure (in kJ)?
(A) -59.0 kJ
(B) -24.9 kJ
(C) +39.3 kJ
(D) -39.3 kJ
2. The constant volume molar heat capacity of $\mathrm{CO}_{2}(\mathrm{~g})$ is constant at $\mathrm{Cv}, \mathrm{m}=28.2 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. When 5 . moles of $\mathrm{CO}_{2}(\mathrm{~g})$ is cooled from $300^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ at a constant pressure of 1 . bar, the enthalpy change and work are approximately:
(A) $\Delta \mathrm{H}=-45.6 \mathrm{~kJ} \& \mathrm{w}=-10.4 \mathrm{~kJ}$
(B) $\Delta \mathrm{H}=-35.3 \mathrm{~kJ} \& \mathrm{w}=+10.4 \mathrm{~kJ}$
(C) $\Delta \mathrm{H}=-45.6 \mathrm{~kJ} \& \mathrm{w}=+10.4 \mathrm{~kJ}$
(D) $\Delta \mathrm{H}=-35.3 \mathrm{~kJ} \& \mathrm{w}=-10.4 \mathrm{~kJ}$

For \#3 - \#4: Consider four(4) moles of a perfect gas initially at a temperature of $300^{\circ} \mathrm{C}$ and volume of 20 L . The gas has a constant volume molar heat capacity,
$\mathrm{C}_{\mathrm{v}, \mathrm{m}}=25.7 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. The gas undergoes a reversible, adiabatic expansion to a final volume of 50 L .
3. The work, w , for this process is approximately:
(A) -11.8 kJ
(B) -7.9 kJ
(C) 0 kJ
(D) -15.1 kJ
4. The Enthalpy change, $\Delta \mathrm{H}$, for this process is approximately:
(A) -15.6 kJ
(B) -20.0 kJ
(C) -26.4 kJ
(D) -10.5 kJ

For \#5 - \#7: The boiling point of p-dibromobenzene is $220^{\circ} \mathrm{C}$ and the Enthalpy of Vaporization is $50.0 \mathrm{~kJ} / \mathrm{mol}$. Consider the reversible condensation of six(6) moles of p-dibromobenzene at $220^{\circ} \mathrm{C}$ and 1 bar pressure.
5. The work, w, for this process is approximately
(A) -11.0 kJ
(B) +24.6 kJ
(C) -24.6 kJ
(D) +11.0 kJ
6. The Internal Energy change, $\Delta \mathrm{U}$, for this process is approximately
(A) -325 kJ
(B) +325 kJ
(C) -275 kJ
(D) 0 kJ
7. The entropy change of the system, $\Delta \mathrm{S}_{\text {sys }}$, for this process is approximately
(A) $-610 \mathrm{~J} / \mathrm{K}$
(B) $-100 \mathrm{~J} / \mathrm{K}$
(C) $0 \mathrm{~J} / \mathrm{K}$
(D) $+610 \mathrm{~J} / \mathrm{K}$
8. The normal melting point of toluene is $-95^{\circ} \mathrm{C}$. The Enthalpy of Fusion of toluene is $6.6 \mathrm{~kJ} / \mathrm{mol}$. What is the approximate entropy change of the surroundings, $\Delta \mathrm{S}$ surr, when three(3) moles of liquid toluene crystallize to solid toluene at $-95^{\circ} \mathrm{C}$?
(A) $-54 \mathrm{~J} / \mathrm{K}$
(B) $-111 \mathrm{~J} / \mathrm{K}$
(C) $+37 \mathrm{~J} / \mathrm{K}$
(D) $+111 \mathrm{~J} / \mathrm{K}$
9. When 20 grams of an unknown compound is dissolved in 150 grams of water $\left(\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$, the freezing point of the solution is $-3.5^{\circ} \mathrm{C}$. What is the Molar Mass of the unknown compound?
(A) $10.6 \mathrm{~g} / \mathrm{mol}$
(B) $71 . \mathrm{g} / \mathrm{mol}$
(C) $124 . . \mathrm{g} / \mathrm{mol}$
(D) $45 . \mathrm{g} / \mathrm{mol}$

For \#10-\#13: Consider the gas phase equilibrium, $2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$. The enthalpy change for this reaction is -170 . kJ and the equilibrium constant is 2.5 at $150^{\circ} \mathrm{C}$.
10. For the above reaction, if $\mathrm{N}_{2}(\mathrm{~g})$ is added at a constant total pressure of 5 bar,
(A) the equilibrium will move to the left and K will decrease
(B) the equilibrium will move to the right and K will increase
(C) the equilibrium will move to the left and K will remain constant
(D) the equilibrium will move to the right and K will remain constant
11. For the above reaction, if the temperature is increased,
(A) the equilibrium will move to the left and K will decrease
(B) the equilibrium will move to the right and K will increase
(C) the equilibrium will move to the left and K will remain constant
(D) the equilibrium will move to the right and K will remain constant
12. The Gibbs energy change, $\Delta_{r} G$, for the above reaction at $150^{\circ} \mathrm{C}$ when $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 5}=2.0$ bar and $\mathrm{P}_{\mathrm{NO} 2}=\mathrm{P}_{\mathrm{O} 2}=0.80$ bar is approximately
(A) -3.2 kJ
(B) -7.6 kJ
(C) +7.6 kJ
(D) +1.2 kJ
13. The value of the equilibrium constant for the above reaction at $100^{\circ} \mathrm{C}$ is approximately:
(A) 1630.
(B) 650 .
(C) 2.52
(D) 6.1×10^{-4}
14. Consider the gas phase equilibrium, $A(g) \rightleftarrows 2 B(g)$. When the pressures of A and B are each 0.30 bar at $100^{\circ} \mathrm{C}$, the Gibbs Energy change for the reaction is -1.50 kJ . What is the approximate value of the equilibrium constant?
(A) 5.4
(B) 0.5
(C) 2.1
(D 0.3
15. Radioisotope decay follows first order kinetics. Radioiodine (${ }^{131}$) is used in the medical treatment of hyperthyroidism. The first order rate constant for the decays of the ${ }^{131} \mathrm{I}$ isotope is 0.087 days $^{-1}$. If a 50 mg sample of radioiodine is administered to a patient, how long will it take for the amount of radioiodine to decrease to 10 mg ?
(A) 26.4 days
(B) 20.7 days
(C) 18.5 days
(D) 11.3 days

For \#16-\#17: Consider the reaction, $A \rightarrow P$, which is a $3 / 2$ order reaction; i.e. rate $=\mathrm{k}[A]^{3 / 2}$. The rate constant for this reaction is $\mathrm{k}=0.02 \mathrm{M}^{-1 / 2} \mathrm{~s}^{-1}$, and the initial concentration of A is 0.60 M .
16. What is the half-life of this reaction?
(A) 17 s
(B) 27 s
(C) 13 s
(D) 53 s
17. What will be the concentration of $[A] 40 \mathrm{~s}$ after the start of the reaction.
(A) 0.35 M
(B) 0.23 M
(C) 0.12 M
(D) 0.42 M
18. The reaction, $A \rightarrow P$, is of order " x "; i.e. rate $=k[A]^{x}$. When $\left[A_{0}\right]=0.6 M$, the half-life of the reaction is $150 . \mathrm{s}$. When $[A]_{0}=0.2 \mathrm{M}$, the half life of the reaction is $260 . \mathrm{s}$. The order of the reaction, x, is
(A) $1 / 2$
(B) 3
(C) $3 / 2$
(D) $5 / 2$
19. Consider a fourth order reaction, $\mathrm{A} \rightarrow$ Products, $-\frac{d[A]}{d t}=k[A]^{4}$

When the initial concentration of A is 0.15 M , the initial rate is $0.030 \mathrm{Ms}^{-1}$. The rate constant for this reaction, k, is approximately
(A) $0.012 \mathrm{M}^{-3} \mathrm{~s}^{-1}$
(B) $60 \cdot \mathrm{M}^{-3} \mathrm{~s}^{-1}$
(C) $1.5 \times 10^{-5} \mathrm{M}^{-3} \mathrm{~s}^{-1}$
(D) $8.9 \mathrm{M}^{-3} \mathrm{~s}^{-1}$
20. When a standard TST Analysis was carried out on temperature dependent rate constant data, it was determined that the Entropy of Activation for the reaction was $+85 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. Therefore, the intercept of the standard TST plot was:

Note: The Transition State Theory (TST) equation in on the information sheet.
(A) -13.5
(B) +108.8
(C) +34.0
(D) +13.5

For \#21-\#22: Consider a hypothetical theory of the rate constant, in which k is of the form: $k=C T^{3 / 2} e^{-\frac{E_{0}}{R T}}$, where C is a constant and E_{0} is the "Threshold Energy".
21. If one has rate constants, k, as a function of temperature, T, what would one plot in order to obtain a straight line using this theory?
(A) $\ln (k / T)$ vs. $1 / T$
(B) $\ln \left(k / T^{3 / 2}\right)$ vs. $1 / T$
(C) $\ln \left(k / T^{1 / 2}\right)$ vs. $1 / T$
(D) $\ln \left(k \bullet T^{3 / 2}\right)$ vs. $1 / T$
22. If a given reaction is of the form given above, and you are told that the Arrhenius Activation Energy, E_{a}, is $130 \mathrm{~kJ} / \mathrm{mol}$, then at $1000^{\circ} \mathrm{C}$, the "Threshold Energy", E_{0}, is approximately:
(A) $117.5 \mathrm{~kJ} / \mathrm{mol}$
(B) $145.9 \mathrm{~kJ} / \mathrm{mol}$
(C) $119.4 \mathrm{~kJ} / \mathrm{mol}$
(D) $114.1 \mathrm{~kJ} / \mathrm{mol}$
23. For the reaction, $2 \mathrm{BrCl}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$, the reaction mechanism is:

$$
\begin{array}{ll}
\mathrm{BrCl}(g)+\mathrm{H}_{2}(g) \stackrel{K}{\rightleftarrows} \mathrm{HBr}(g)+\mathrm{HCl}(g) & \text { Fast equilibrium } \\
\mathrm{HBr}(g)+\mathrm{BrCl}(g) \stackrel{k}{\longleftrightarrow} \mathrm{HCl}(g)+\mathrm{Br}_{2}(g) & \text { Slow step }
\end{array}
$$

An acceptable overall rate equation for the formation of $\mathrm{Br}_{2}, \frac{\mathrm{~d}\left[\mathrm{Br}_{2}\right]}{\mathrm{dt}}$, is:
(A) Rate $=k^{\prime} \frac{[\mathrm{BrCl}]^{2}\left[\mathrm{H}_{2}\right]}{[\mathrm{HCl}]}$
(B) Rate $=k^{\prime}[\mathrm{BrC} /]\left[\mathrm{H}_{2}\right]$
(C) Rate $=k^{\prime}[\mathrm{HBr}][\mathrm{BrC} /]$
(D) Rate $=k^{\prime} \frac{[\mathrm{BrCl}]\left[\mathrm{H}_{2}\right]}{[\mathrm{HCl}]}$
24. In a photochemical reaction, $A \rightarrow 2 B+C$, the reaction quantum yield for the decomposition of A is $\Phi_{R}=0.45$. A absorbs radiation at a rate of $5 . \times 10^{19}$ absorbed photons per second for a total of 90 minutes. Approximately how many moles of B have been formed by the end of the irradiation period?
*The numerical value of λ is unnecessary to work the question.
(A) 0.10 mol
(B) 0.49 mol
(C) 0.20 mol
(D) 0.40 mol

For \#25-\#26: In a pulsed laser fluorescence experiment on an organic chromophore, the fluorescence intensity 45 ns after the experiment begins is 70% of the intensity at the start of the experiment.
In a separate steady-state fluoescence experiment, it was determined that the fluorescence rate constant is: $\mathrm{kF}_{\mathrm{F}}=3.4 \times 10^{6} \mathrm{~s}^{-1}$
25. The singlet state lifetime of the chromophore, τ_{0}, is approximately:
(A) 37 ns
(B) 126 ns
(C) 290 ns
(D) 16 ns
26. The fluorescence quantum yield of the chromophore is approximately:
(A) 0.43
(B) 2.3
(C) 0.68
(D) 0.13

There are six (6) problems following. You must show your work to receive credit.
(10) 1. A Perfect Gas has a temperature dependent constant pressure molar heat capacity, $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\mathrm{a}+\mathrm{bT}^{2}$, with $\mathrm{a}=22 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ and $\mathrm{b}=1.5 \times 10^{-5} \mathrm{~J} / \mathrm{mol}-\mathrm{K}^{3}$.
Three (3) moles of this gas, originally at $600^{\circ} \mathrm{C}$ and 1.5 atm is cooled reversibly at constant volume to $200^{\circ} \mathrm{C}$.
Calculate the Internal Energy change, $\Delta \mathrm{U}$, for this process, in kJ .
(10) 2. Consider a hypothetical gas that obeys the equation of state:

$$
p\left(V-B p^{2}\right)=n R T
$$

If this gas undergoes an isothermal compression from p_{1} to p_{2}, develop INTEGRATED expressions for ΔU and ΔA in terms of n, R, T, B, p_{1} and p_{2}.
(10) 3. The normal boiling point of octane is $125^{\circ} \mathrm{C}$.

The Enthalpy of Vaporization of octane is $34.4 \mathrm{~kJ} / \mathrm{mol}$ at $125^{\circ} \mathrm{C}$.
The constant pressure molar heat capacity of liquid octane is $240 . \mathrm{J} / \mathrm{mol}-\mathrm{K}$.
The constant pressure molar heat capacity of octane gas is $180 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.
Calculate the entropy change of the Surroundings, $\Delta \mathbf{S}_{\text {surr }}$, (in J/mol-K) when one (1) mole of super heated liquid octane vaporizes irreversibly at $145^{\circ} \mathrm{C}$.
(10) 4. Consider a first order reaction for which the the rate constant is $85 . \mathrm{s}^{-1}$ at $50^{\circ} \mathrm{C}$ and $3200 . \mathrm{s}^{-1}$ at $150^{\circ} \mathrm{C}$.

Calculate the Arrhenius pre-exponential factor, A (in s^{-1}), for this reaction.
(10) 5. The reaction, $2 \mathrm{~B}+\mathrm{C} \rightarrow \mathrm{P}$ (P is the product) proceeds by the following mechanism.

$$
\mathrm{B}+\mathrm{C} \underset{\mathrm{k}_{-1}}{\stackrel{k_{1}}{\longrightarrow}} \mathrm{I} \quad \text { followed by } \quad \mathrm{B}+\mathrm{I} \xrightarrow{\mathrm{k}_{2}} \mathrm{P}
$$

" I " is an intermediate present in steady-state concentration. Use the steady-state approximation on [I] to develop an expression for the rate of formation of P as a function of $[B],[C], k_{1}, k_{-1}$ and k_{2}.
(10) 6. The fluorescence quantum yield for a given chromophore, A, has been determined to be $\Phi F=0.60$. A sample of A is irradiated with 260 nm radiation from a $150 \mathrm{~W}(\mathrm{~J} / \mathrm{s})$ for a period of 1 hour. The intensity of the transmitted light is 30% that of the incident light.
How many moles of the sample, A, have fluoresced in the 1 hour period?

