CHEM 5200 - Final Exam - December 13, 2018

INFORMATION PAGES (Use for reference and for scratch paper)

Constants and Conversion Factors:

$$R = 8.31 \text{ J/mol-K} = 8.31 \text{ kPa-L/mol-K} = 0.00831 \text{ kJ/mol-K}$$
1 L-atm = 101 J1 L-bar = 100 J1 kPa-L = 1 J1 bar = 100 kPa1 atm = 760 torr1 bar = 750 torr

Relations for Adiabatic Expansions and Compressions of a Perfect Gas

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{R/C_{V,m}} \quad \text{or} \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{C_{P,m}/C_{V,m}} = \left(\frac{V_1}{V_2}\right)^{\gamma}$$

The TST Equation: $k = \frac{RT}{N_A h} e^{\frac{\Delta S^{\pm}}{R}} e^{-\frac{\Delta H^{\pm}}{RT}}$ R, N_A and h are universal constants: where: $\frac{R}{N_A h} = \frac{8.31}{(6.02x10^{23})(6.63x10^{-34})} = 2.1x10^{10}$

Photochemistry equations on following page.

Photochemistry

Singlet State Lifetime: $\tau_0 = \frac{1}{k_0} = \frac{1}{k_F + k_{IC} + k_{ISC}}$

Fluorence Quantum Yield (No quencher):

 $\Phi_{F,0} = \frac{k_F}{k_F + k_{IC} + k_{ISC}} = \frac{k_F}{k_0}$

Light Energy/Wavelength Relation: $E_{ph} = hv = \frac{hc}{\lambda(m)} = \frac{1.99 \times 10^{-25} \text{ J} \cdot m}{\lambda(m)}$

Fluorescence Quantum Yield (quencher, Q, present): -

NOT NEEDED THIS YEAR $\Phi_F = \frac{k_F}{k_F + k_{IC} + k_{ISC} + k_O[Q]} = \frac{k_F}{k_0 + k_O[Q]}$

Name_____

If you wish to have your final exam and course grade posted on the Web site, please provide me with a four (4) digit number which will be the ID number for your grade.

Four (4) digit number for posting

(78) MULTIPLE CHOICE [3 points per question] (Circle the ONE correct answer)

1. Dimanganese Decacarbonyl can be decomposed to CO(g) and Mn(s) via the reaction: $Mn_2(CO)_{10}(s) \rightarrow 2Mn(s) + 10CO(g)$

What is the work involved when a sufficient quantity of $Mn_2(CO)_{10}(s)$ is decomposed to form three(3) moles of Mn(s) at 200 °C and 1. bar pressure (in kJ)?

(A) -59.0 kJ (B) -24.9 kJ (C) +39.3 kJ (D) -39.3 kJ

- The constant volume molar heat capacity of CO₂(g) is constant at C_{V,m} = 28.2 J/mol-K. When 5. moles of CO₂(g) is cooled from 300 °C to 50 °C at a constant pressure of 1. bar, the enthalpy change and work are approximately:
 - (A) $\Delta H = -45.6 \text{ kJ} \& w = -10.4 \text{ kJ}$ (B) $\Delta H = -35.3 \text{ kJ} \& w = +10.4 \text{ kJ}$
 - (C) $\Delta H = -45.6 \text{ kJ } \& w = +10.4 \text{ kJ}$ (D) $\Delta H = -35.3 \text{ kJ } \& w = -10.4 \text{ kJ}$

For #3 - #4: Consider **four(4)** moles of a perfect gas initially at a temperature of 300 °C and volume of 20 L. The gas has a **constant volume** molar heat capacity, C_{V,m} = 25.7 J/mol-K. The gas undergoes a **reversible, adiabatic** expansion to a final volume of 50 L.

- 3. The work, w, for this process is approximately:
 - (A) -11.8 kJ (B) -7.9 kJ (C) 0 kJ (D) -15.1 kJ
- 4. The Enthalpy change, ΔH , for this process is approximately:
 - (A) -15.6 kJ (B) -20.0 kJ (C) -26.4 kJ (D) -10.5 kJ

For #5 - #7: The boiling point of p-dibromobenzene is 220 °C and the Enthalpy of Vaporization is 50.0 kJ/mol. Consider the reversible condensation of **six(6)** moles of p-dibromobenzene at 220 °C and 1 bar pressure.

- 5. The work, w, for this process is approximately
 - (A) -11.0 kJ (B) +24.6 kJ (C) -24.6 kJ (D) +11.0 kJ
- 6. The Internal Energy change, ΔU , for this process is approximately
 - (A) -325 kJ (B) +325 kJ (C) -275 kJ (D) 0 kJ

7. The entropy change of the system, ΔS_{sys} , for this process is approximately

(A) -610 J/K (B) -100 J/K (C) 0 J/K (D) +610 J/K

The normal melting point of toluene is -95 °C. The Enthalpy of Fusion of toluene is 6.6 kJ/mol. What is the approximate entropy change of the surroundings, ∆S_{surr}, when three(3) moles of liquid toluene crystallize to solid toluene at -95 °C?

- (A) -54 J/K (B) -111 J/K (C) +37 J/K (D) +111 J/K
- 9. When 20 grams of an unknown compound is dissolved in 150 grams of water (Kf = 1.86 °C/m), the freezing point of the solution is -3.5 °C. What is the Molar Mass of the unknown compound?
 - (A) 10.6 g/mol (B) 71. g/mol (C) 124.. g/mol (D) 45. g/mol

For #10 - #13: Consider the gas phase equilibrium,

 $2 \text{ NO}_2(g) + \frac{1}{2} \text{ O}_2(g) \rightleftharpoons \text{N}_2\text{O}_5(g)$. The enthalpy change for this reaction is -170. kJ and the equilibrium constant is 2.5 at 150 °C.

10. For the above reaction, if N₂(g) is added at a constant total pressure of 5 bar,

- (A) the equilibrium will move to the left and K will decrease
- (B) the equilibrium will move to the right and K will increase
- (C) the equilibrium will move to the left and K will remain constant
- (D) the equilibrium will move to the right and K will remain constant
- 11. For the above reaction, if the temperature is increased,
 - (A) the equilibrium will move to the left and K will decrease
 - (B) the equilibrium will move to the right and K will increase
 - (C) the equilibrium will move to the left and K will remain constant
 - (D) the equilibrium will move to the right and K will remain constant

- 12. The Gibbs energy change, $\Delta_r G$, for the above reaction at 150 °C when $P_{N205} = 2.0$ bar and $P_{N02} = P_{02} = 0.80$ bar is approximately
 - (A) -3.2 kJ (B) -7.6 kJ (C) +7.6 kJ (D) +1.2 kJ
- The value of the equilibrium constant for the above reaction at 100 °C is approximately:
 - (A) 1630. (B) 650. (C) 2.52 (D) 6.1x10⁻⁴
- 14. Consider the gas phase equilibrium, $A(g) \rightleftharpoons 2B(g)$. When the pressures of A and B are each 0.30 bar at 100 °C, the Gibbs Energy change for the reaction is -1.50 kJ. What is the approximate value of the equilibrium constant?
 - (A) 5.4 (B) 0.5 (C) 2.1 (D 0.3
- 15. Radioisotope decay follows first order kinetics. Radioiodine (¹³¹I) is used in the medical treatment of hyperthyroidism. The first order rate constant for the decays of the ¹³¹I isotope is 0.087 days⁻¹. If a 50 mg sample of radioiodine is administered to a patient, how long will it take for the amount of radioiodine to decrease to 10 mg?
 - (A) 26.4 days (B) 20.7 days (C) 18.5 days (D) 11.3 days

For #16 - #17: Consider the reaction, $A \rightarrow P$, which is a 3/2 order reaction; i.e. rate = k[A]^{3/2}. The rate constant for this reaction is k= 0.02 M^{-1/2}s⁻¹, and the initial concentration of A is 0.60 M.

- 16. What is the half-life of this reaction?
 - (A) 17 s (B) 27 s (C) 13 s (D) 53 s
- 17. What will be the concentration of [A] 40 s after the start of the reaction.
 - (A) 0.35 M (B) 0.23 M (C) 0.12 M (D) 0.42 M
- 18. The reaction, $A \rightarrow P$, is of order "x"; i.e. rate = k[A]^x. When $[A_0] = 0.6$ M, the half-life of the reaction is 150. s. When $[A]_0 = 0.2$ M, the half life of the reaction is 260. s. The order of the reaction, x, is
 - (A) 1/2 (B) 3 (C) 3/2 (D) 5/2

19. Consider a fourth order reaction, A \rightarrow Products, $-\frac{d[A]}{dt} = k[A]^4$

When the initial concentration of A is 0.15 M, the initial rate is 0.030 Ms⁻¹. The rate constant for this reaction, k, is approximately

(A) $0.012 \text{ M}^{-3}\text{s}^{-1}$ (B) 60. $\text{M}^{-3}\text{s}^{-1}$ (C) $1.5x10^{-5} \text{ M}^{-3}\text{s}^{-1}$ (D) $8.9 \text{ M}^{-3}\text{s}^{-1}$

20. When a standard TST Analysis was carried out on temperature dependent rate constant data, it was determined that the Entropy of Activation for the reaction was +85 J/mol-K. Therefore, the intercept of the standard TST plot was:

Note: The Transition State Theory (TST) equation in on the information sheet.

(A) -13.5 (B) +108.8 (C) +34.0 (D) +13.5

For #21 - #22: Consider a hypothetical theory of the rate constant, in which k is of the form: $k = CT^{3/2}e^{\frac{E_0}{RT}}$, where C is a constant and E₀ is the "Threshold Energy".

- 21. If one has rate constants, k, as a function of temperature, T, what would one plot in order to obtain a straight line using this theory?
 - (A) $\ln(k/T)$ vs. 1/T(B) $\ln(k/T^{3/2})$ vs. 1/T(C) $\ln(k/T^{1/2})$ vs. 1/T(D) $\ln(k \bullet T^{3/2})$ vs. 1/T
- 22. If a given reaction is of the form given above, and you are told that the **Arrhenius Activation Energy**, **E**_a, is 130. kJ/mol, then at 1000 °C, the **"Threshold Energy"**, **E**₀, is approximately:
 - (A) 117.5 kJ/mol (B) 145.9 kJ/mol (C) 119.4 kJ/mol (D) 114.1 kJ/mol
- 23. For the reaction, 2 BrCl(g) + H₂(g) \rightarrow 2 HCl(g) + Br₂(g), the reaction mechanism is:

 $BrCl(g) + H_2(g) \xleftarrow{K} HBr(g) + HCl(g)$ Fast equilibrium

 $HBr(g) + BrCl(g) \xrightarrow{k} HCl(g) + Br_2(g)$ Slow step

An acceptable overall rate equation for the formation of Br₂, $\frac{d[Br_2]}{dt}$, is:

(A) $Rate = k' \frac{[BrCl]^2[H_2]}{[HCl]}$ (B) $Rate = k'[BrCl][H_2]$ (C) Rate = k'[HBr][BrCl] (D) $Rate = k' \frac{[BrCl][H_2]}{[HCl]}$ 24. In a photochemical reaction, $A \rightarrow 2 B + C$, the reaction quantum yield for the decomposition of A is $\Phi_R = 0.45$. A absorbs radiation at a rate of $5.x10^{19}$ absorbed photons per second for a total of 90 minutes. Approximately how many moles of B have been formed by the end of the irradiation period?

*The numerical value of λ is unnecessary to work the question.

(A) 0.10 mol (B) 0.49 mol (C) 0.20 mol (D) 0.40 mol

For #25 - #26: In a **pulsed** laser fluorescence experiment on an organic chromophore, the fluorescence intensity 45 ns after the experiment begins is 70% of the intensity at the start of the experiment.

In a separate steady-state fluoescence experiment, it was determined that the fluorescence rate constant is: $k_F = 3.4 \times 10^6 \text{ s}^{-1}$

25. The singlet state lifetime of the chromophore, τ_0 , is approximately:

(A) 37 ns (B) 126 ns (C) 290 ns (D) 16 ns

26. The fluorescence quantum yield of the chromophore is approximately:

(A) 0.43	(B) 2.3	(C) 0.68	(D) 0.13

There are six (6) problems following. You must show your work to receive credit.

(10) 1. A Perfect Gas has a temperature dependent constant pressure molar heat capacity, C_{p,m} = a + bT², with a = 22 J/mol-K and b = 1.5x10⁻⁵ J/mol-K³. Three (3) moles of this gas, originally at 600 °C and 1.5 atm is cooled reversibly at constant volume to 200 °C.

Calculate the Internal Energy change, ΔU , for this process, in kJ.

(10) 2. Consider a hypothetical gas that obeys the equation of state:

$$p\left(V-Bp^2\right)=nRT$$

If this gas undergoes an isothermal compression from p_1 to p_2 , develop **INTEGRATED** expressions for ΔU and ΔA in terms of n, R, T, B, p_1 and p_2 .

 (10) 3. The normal boiling point of octane is 125 °C. The Enthalpy of Vaporization of octane is 34.4 kJ/mol at 125 °C. The constant pressure molar heat capacity of liquid octane is 240. J/mol-K. The constant pressure molar heat capacity of octane gas is 180 J/mol-K.

Calculate the entropy change of the **Surroundings**, Δ **S**_{surr}, (in J/mol-K) when one (1) mole of super heated liquid octane vaporizes irreversibly at 145 °C.

(10) 4. Consider a first order reaction for which the the rate constant is 85. s⁻¹ at 50 °C and 3200. s⁻¹ at 150 °C.

Calculate the Arrhenius pre-exponential factor, A (in s⁻¹), for this reaction.

(10) 5. The reaction, $2B + C \rightarrow P$ (P is the product) proceeds by the following mechanism. $B + C \xleftarrow[k_1]{k_1} I$ followed by $B + I \xrightarrow{k_2} P$

"I" is an intermediate present in steady-state concentration. Use the steady-state approximation on [I] to develop an expression for the rate of formation of P as a function of [B], [C], k_1 , k_{-1} and k_2 .

(10) 6. The fluorescence quantum yield for a given chromophore, A, has been determined to be $\Phi_F = 0.60$. A sample of A is irradiated with 260 nm radiation from a 150 W (J/s) for a period of 1 hour. The intensity of the **transmitted** light is 30% that of the incident light.

How many moles of the sample, A, have fluoresced in the 1 hour period?