Chapter 2 Homework Solutions

2.1 $\mathrm{Cl}_{2}-3$ translations +2 rotations +1 vibration
(a) $\mathrm{U}_{\mathrm{m}}($ rigid $)=(3 / 2) \mathrm{RT}+(2 / 2) \mathrm{RT}=(5 / 2) \mathrm{RT}, \mathrm{H}_{\mathrm{m}}($ rigid $)=(7 / 2) \mathrm{RT}$ $\mathrm{C}_{\mathrm{p}, \mathrm{m}}($ rigid $)=(7 / 2) \mathrm{R}=29.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(b) $\mathrm{U}_{\mathrm{m}}(\mathrm{vib})=(3 / 2) \mathrm{RT}+(2 / 2) \mathrm{RT}+\mathrm{RT}=(7 / 2) \mathrm{RT}, \mathrm{H}_{\mathrm{m}}(\mathrm{vib})=(9 / 2) \mathrm{RT}$ $C_{p, m}(\mathrm{vib})=(9 / 2) R=37.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$2.2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~N}=12)-3$ translations +3 rotations $+(3 \times 12-6)=30$ vibrations
(a) $\mathrm{U}_{\mathrm{m}}($ rigid $)=(3 / 2) \mathrm{RT}+(3 / 2) \mathrm{RT}=3 \mathrm{RT}, \mathrm{H}_{\mathrm{m}}$ (rigid) $=4 \mathrm{RT}$
$\mathrm{C}_{\mathrm{p}, \mathrm{m}}(\mathrm{rigid})=4 \mathrm{R}=33.2 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(b) $\mathrm{U}_{\mathrm{m}}(\mathrm{vib})=(3 / 2) \mathrm{RT}+(3 / 2) \mathrm{RT}+30 \mathrm{RT}=33 \mathrm{RT}, \mathrm{H}_{\mathrm{m}}(\mathrm{vib})=34 \mathrm{RT}$ $\mathrm{C}_{\mathrm{p}, \mathrm{m}}(\mathrm{vib})=34 \mathrm{R}=282.5 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
2.3 $\mathrm{CO}_{2}(\mathrm{~N}=3)-3$ translations +2 rotations $+(3 x 3-5)=4$ vibrations
(a) $\mathrm{U}_{\mathrm{m}}($ rigid $)=(3 / 2) \mathrm{RT}+(2 / 2) \mathrm{RT}=(5 / 2) \mathrm{RT}, \mathrm{H}_{\mathrm{m}}($ rigid $)=(7 / 2) \mathrm{RT}$ $\mathrm{C}_{\mathrm{p}, \mathrm{m}}($ rigid $)=(7 / 2) \mathrm{R}=29.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
(b) $\mathrm{U}_{\mathrm{m}}(\mathrm{vib})=(3 / 2) \mathrm{RT}+(2 / 2) \mathrm{RT}+4 \mathrm{RT}=(13 / 2) \mathrm{RT}, \mathrm{H}_{\mathrm{m}}(\mathrm{vib})=(15 / 2) \mathrm{RT}$ $C_{p, m}(v i b)=(15 / 2) R=62.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
2.4 $\quad \mathrm{V}_{1}=22.4 \mathrm{~L}, \mathrm{~V}_{2}=44.8 \mathrm{~L}, \mathrm{~T}=273 \mathrm{~K}$ (constant) , $\mathrm{n}=1.00 \mathrm{~mol}$
(a) Reversible

$$
\begin{aligned}
& \Delta U=n C_{V, m} \Delta T=0 \quad \Delta H=n C_{p, m} \Delta T=0 \\
& w=-n R T \ln \left(V_{2} / V_{1}\right)=-1 \mathrm{~mol}(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K}) \ln (44.8 / 22.4)=-1570 \mathrm{~J} \\
& \mathrm{q}=\Delta \mathrm{U}-\mathrm{w}=+1570 \mathrm{~J}
\end{aligned}
$$

(b) Constant p (final pressure): $\quad p=\frac{n R T}{V}=\frac{(1 \mathrm{~mol})(8.31 \mathrm{kPa} \cdot \mathrm{L} / \mathrm{mol} \cdot \mathrm{K})(273 \mathrm{~K})}{44.8 \mathrm{~L}}=50.6 \mathrm{kPa}$

$$
\Delta \mathrm{U}=\Delta \mathrm{H}=0
$$

$$
w=-p\left(V_{2}-V_{1}\right)=-50.6 \mathrm{kPa}(44.8 \mathrm{~L}-22.4 \mathrm{~L})=-1130 \mathrm{kPa} \cdot L=-1130 \mathrm{~J}
$$

$$
\mathrm{q}=\Delta \mathrm{U}-\mathrm{w}=+1130 \mathrm{~J}
$$

(c) $\mathrm{p}=0$

$$
\begin{aligned}
& \Delta \mathrm{U}=\Delta \mathrm{H}=0 \\
& w=-p\left(V_{2}-V_{1}\right)=0 \\
& \mathrm{q}=\Delta \mathrm{U}-\mathrm{w}=0
\end{aligned}
$$

$2.5 \quad p_{1}=1.00 \mathrm{~atm} \cdot \frac{101.3 \mathrm{kPa}}{1 \mathrm{~atm}}=101.3 \mathrm{kPa} \quad \mathrm{T}_{1}=300 \mathrm{~K} \quad \mathrm{~T}_{2}=400 \mathrm{~K}$

$$
\begin{aligned}
\frac{p_{2}}{T_{2}} & =\frac{p_{1}}{T_{1}} \rightarrow \quad p_{2}=p_{1} \frac{T_{2}}{T_{1}}=101.3 \mathrm{kPa} \cdot \frac{400}{300}=135.1 \mathrm{kPa} \\
\Delta U & =n C_{V, m} \Delta T=n\left(\frac{3}{2} R\right) \Delta T=(1.0 \mathrm{~mol})(1.50)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(400 \mathrm{~K}-300 \mathrm{~K}) \\
& =1250 \mathrm{~J}=1.25 \mathrm{~kJ}
\end{aligned}
$$

$$
\mathrm{w}=0 \text { (because } \mathrm{V}=\text { constant })
$$

$$
\mathrm{q}=\Delta \mathrm{U}-\mathrm{w}=\Delta \mathrm{U}=1.25 \mathrm{~kJ}
$$

2.6 $\quad \mathrm{n}=1 . \mathrm{mol}, \mathrm{T}=100^{\circ} \mathrm{C}=373 \mathrm{~K}, \Delta_{\text {vap }} \mathrm{H}=40.7 \mathrm{~kJ} / \mathrm{mol}$

$$
\mathrm{w}=-\mathrm{P}\left(\mathrm{~V}_{\mathrm{liq}}-\mathrm{V}_{\mathrm{gas}}\right) \approx+\mathrm{PV}_{\mathrm{gas}}=\mathrm{nRT}=(1.0 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(373 \mathrm{~K})=+3100 \mathrm{~J}=+3.10 \mathrm{~kJ}
$$

$$
\mathrm{q}=\Delta \mathrm{H}=\mathrm{n} \Delta_{\text {cond }} \mathrm{H}=\mathrm{n}\left(-\Delta_{\mathrm{vap}} \mathrm{H}\right)=(1 \mathrm{~mol})(-40.7 \mathrm{~kJ} / \mathrm{mol})=-40.7 \mathrm{~kJ}
$$

$$
\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=-40.7 \mathrm{~kJ}+3.10 \mathrm{~kJ}=-37.6 \mathrm{~kJ}
$$

2.7 $\mathrm{T}=25^{\circ} \mathrm{C}=298 \mathrm{~K}, \mathrm{p}=1.00 \mathrm{~atm}$, Reaction: $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

We will need $n\left(\mathrm{H}_{2}\right)$ below: $n\left(\mathrm{H}_{2}\right)=15 \mathrm{~g} \mathrm{Mg} \cdot \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.3 \mathrm{~g} \mathrm{Mg}} \cdot \frac{1 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{Mg}}=0.617 \mathrm{~mol} \mathrm{H}_{2}$

$$
w=-p\{\Delta V\}=-p\left\{V_{\text {prod }}-V_{\text {rct }}\right\}=-p\left\{V_{\mathrm{H}_{2}}+V_{\mathrm{MgCl}_{2}}-V_{\mathrm{Mg}}-V_{\mathrm{HCl}}\right\} \approx-p V_{\mathrm{H}_{2}}
$$

Simplificaion above because volumes of liquids/solids are negligible compared to volumes of gases.

$$
w=-p\{\Delta V\}=-p V_{\mathrm{H}_{2}}=-n_{\mathrm{H}_{2}} R T=-(0.617 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K})=-1530 \mathrm{~J} \approx-1.5 \mathrm{~kJ}
$$

2.82 mol of $\mathrm{W}(\mathrm{s})$ requires $2 \mathrm{~mol} \mathrm{~W} \times 6 \mathrm{~mol} \mathrm{CO} / 1 \mathrm{~mol} \mathrm{~W}=12 \mathrm{~mol}$ of $\mathrm{CO}(\mathrm{g}) . \mathrm{T}=150^{\circ} \mathrm{C}=423 \mathrm{~K}$ $\mathrm{w}=-\mathrm{P}\left[\mathrm{V}_{\text {prod }}-\mathrm{V}_{\text {rct }}\right]=+\mathrm{PV}_{\text {rct }}=+\mathrm{PV}_{\mathrm{CO}} \quad$ [Consider only gas phase reactants or products] $\mathrm{w}=-\mathrm{PV} \mathrm{CO}_{\mathrm{CO}}=-\mathrm{n}_{\mathrm{CO}} \mathrm{RT}=-12 \mathrm{~mol}(8.31 \mathrm{~J} / \mathrm{mol} \times \mathrm{K})(423 \mathrm{~K})=42,200 \mathrm{~J}=+42.2 \mathrm{~kJ}$
$2.9 \mathrm{n}=1 \mathrm{~mol}, \mathrm{~T}_{1}=25^{\circ} \mathrm{C}=298 \mathrm{~K}, \mathrm{~T}_{2}=200^{\circ} \mathrm{C}=473 \mathrm{~K}$
$\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\mathrm{a}+\mathrm{bT}, \mathrm{a}=20.17 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \mathrm{b}=0.37 \mathrm{~J} / \mathrm{mol}-\mathrm{K}^{2}$

(a) Constant Pressure [q = $\mathbf{\Delta H}$]

$$
\begin{aligned}
q & =\Delta H=\int_{T_{1}}^{T_{2}} n C_{p, m} d T=n \int_{T_{1}}^{T_{2}}(a+b T) d T=n a\left[T_{2}-T_{1}\right]+n b\left[\frac{T_{2}^{2}}{2}-\frac{T_{1}^{2}}{2}\right] \\
& =(1 \mathrm{~mol})(20.17 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(473 \mathrm{~K}-298 \mathrm{~K})+\left(1 \mathrm{~mol}\left(0.37 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}^{2}\right)\left[\frac{(473 \mathrm{~K})^{2}}{2}-\frac{(298 \mathrm{~K})^{2}}{2}\right]\right. \\
& =3530 \mathrm{~J}+24960 \mathrm{~J}=28490 \mathrm{~J} \approx 28.5 \mathrm{~kJ} \\
w & =-p\left(V_{2}-V_{1}\right)=-p V_{2}+p V_{1}=-n R T_{2}+n R T_{1}=-n R\left(T_{2}-T_{1}\right) \\
& =-(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(473 \mathrm{~K}-298 \mathrm{~K})=-1450 \mathrm{~J} \approx-1.5 \mathrm{~kJ}
\end{aligned}
$$

$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=28490 \mathrm{~J}+(-1450 \mathrm{~J})=27040 \mathrm{~J} \approx 27.0 \mathrm{~kJ}$

(b) Constant Volume $[q=\Delta U$ and $w=0]$

For a Perfect Gas, U and H depend only upon temperature. Therefore, the values of $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ are the same as in part (a):

$$
\begin{aligned}
& \Delta \mathrm{U}=27040 \mathrm{~J} \approx 27.0 \mathrm{~kJ} \\
& \Delta \mathrm{H}=28490 \mathrm{~J} \approx 28.5 \mathrm{~kJ}
\end{aligned}
$$

> Because V = constant,

$$
\mathrm{w}=0
$$

$$
\mathrm{q}=\Delta \mathrm{U}=27040 \mathrm{~J} \approx 27.0 \mathrm{~kJ}
$$

2.10 $\mathrm{C}_{\mathrm{v}, \mathrm{m}}=\mathrm{C}_{\mathrm{p}, \mathrm{m}}-\mathrm{R}=37.11-8.31=28.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.

$$
n=2.45 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{44 \mathrm{~g}}=0.056 \mathrm{~mol}
$$

$\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}, \quad \mathrm{~V}_{1}=500 \mathrm{~cm}^{3}=0.50 \mathrm{~L}, \mathrm{~V}_{2}=3.00 \mathrm{~L}$
Let's calculate T_{2} for an adiabatic expansion. We'll need $\mathrm{R} / \mathrm{C}_{\mathrm{V}, \mathrm{m}}=8.31 / 28.8=0.289$

$$
\left(\frac{T_{2}}{T_{1}}\right)=\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{V, m}} \rightarrow T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{V, m}}=(300 \mathrm{~K})\left(\frac{0.50}{3.00}\right)^{0.289}=179 \mathrm{~K}
$$

Adiabatic Expansion: $\mathrm{q}=0 \rightarrow \mathrm{w}=\Delta \mathrm{U}$

$$
\begin{aligned}
w & =\Delta U=n C_{V, m}\left(T_{2}-T_{1}\right)=(0.056 \mathrm{~mol})(28.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(179 \mathrm{~K}-300 \mathrm{~K}) \\
& =-195 \mathrm{~J}
\end{aligned}
$$

$2.11 \mathrm{n}=3.0 \mathrm{~mol}, \mathrm{~T}_{1}=260 \mathrm{~K}, \mathrm{~T}_{2}=285 \mathrm{~K}, \mathrm{C}_{\mathrm{p}, \mathrm{m}}=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ Let's calculate $\mathrm{C}_{\mathrm{V}, \mathrm{m}}: \mathrm{C}_{\mathrm{V}, \mathrm{m}}=\mathrm{C}_{\mathrm{p}, \mathrm{m}}-\mathrm{R}=29.4-8.31 \approx 21.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
Because $\mathrm{p}=$ constant, $\mathrm{q}=\Delta \mathrm{H}$

$$
\begin{aligned}
& q=\Delta H=n C_{p, m} \Delta T=(3.0 \mathrm{~mol})(29.4 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(285 \mathrm{~K}-260 \mathrm{~K})=2205 \mathrm{~J} \approx 2.2 \mathrm{~kJ} \\
& \Delta U=n C_{V, m} \Delta T=(3.0 \mathrm{~mol})(21.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(285 \mathrm{~K}-260 \mathrm{~K})=1580 \mathrm{~J} \approx 1.6 \mathrm{~kJ}
\end{aligned}
$$

$2.12 \mathrm{n}=1.00 \mathrm{~mol}, \mathrm{CV}_{\mathrm{V}, \mathrm{m}}=20.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \mathrm{T}_{1}=310 \mathrm{~K}, \mathrm{p}_{1}=3.25 \mathrm{~atm}, \mathrm{p}_{2}=2.50 \mathrm{~atm}$

$$
V_{1}=\frac{n R T_{1}}{p_{1}}=\frac{(1.0 \mathrm{~mol})(0.082 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(310 \mathrm{~K})}{3.25 \mathrm{~atm}}=7.82 \mathrm{~L}
$$

$$
\gamma=\frac{C_{p, m}}{C_{V, m}}=\frac{C_{V, m}+R}{C_{V, m}}=\frac{20.8+8.31}{20.8}=1.40
$$

$$
p_{2} V_{2}^{\gamma}=p_{1} V_{1}^{\gamma} \rightarrow V_{2}^{\gamma}=\left(\frac{p_{1}}{p_{2}}\right) V_{1}^{\gamma}=\left(\frac{3.25}{2.50}\right)(7.82)^{1.40}=23.06=V_{2}^{1.40}
$$

$$
V_{2}=(23.06)^{1 / 1.40}=9.41 \mathrm{~L}
$$

$$
T_{2}=\frac{p_{2} V_{2}}{n R}=\frac{(2.50)(9.41)}{(1)(0.082)}=287 \mathrm{~K}
$$

Adiabatic: $\mathrm{q}=0$
$w=\Delta U=n C_{V, m}\left[T_{2}-T_{1}\right]=(1 \mathrm{~mol})(20.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})(287 \mathrm{~K}-310 \mathrm{~K})=-480 \mathrm{~J} \approx-0.5 \mathrm{~kJ}$
$2.13 \mathrm{n}=0.50 \mathrm{~mol}, \mathrm{~T}=250 \mathrm{~K} \quad \Delta_{\text {vap }} \mathrm{H}^{\mathrm{o}}=26.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{p}=$ const (phase transition). Therefore $\mathrm{q}=\Delta \mathrm{H}$

$$
\begin{aligned}
q & =\Delta H=n \cdot \Delta_{\text {vap }} H^{o}=(0.50 \mathrm{~mol})(26.0 \mathrm{~kJ} / \mathrm{mol})=13.0 \mathrm{~kJ} \\
w & =-p\left(V_{\text {gas }}-V_{\text {liq }}\right) \approx-p V_{\text {gas }}=-n R T=-(0.50 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(250 \mathrm{~K}) \\
& =-1040 \mathrm{~J} \approx-1.0 \mathrm{~kJ}
\end{aligned}
$$

$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=+13.0-1.0=12.0 \mathrm{~kJ}$
2.14 $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{l})+(21 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\begin{aligned}
\Delta_{\text {comb }} H^{o} & =8 \Delta_{f} H^{o}\left(\mathrm{CO}_{2}\right)+5 \Delta_{f} H^{o}\left(\mathrm{H}_{2} \mathrm{O}\right)-\left[1 \Delta_{f} H^{o}\left(C_{6} H_{5} C_{2} H_{5}\right)+(21 / 2) \cdot 0\right] \\
& =8(-393.5)+5(-285.8)-[1(-12.5)]=-4564.5 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

2. 15 For $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{a}=1.35 \mathrm{~L}^{2}$-atm $/ \mathrm{mol}^{2}, \mathrm{~b}=0.039 \mathrm{~L} / \mathrm{mol}$ $\mathrm{n}=2 \mathrm{~mol}, \mathrm{~T}=298 \mathrm{~K}, \mathrm{~V}_{1}=1.00 \mathrm{~L}, \mathrm{~V}_{2}=24.8 \mathrm{~L}$

Internal Energy ($\Delta \mathbf{U}$)

$$
\begin{aligned}
\pi_{T} & =\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{n^{2} a}{V^{2}} \\
\Delta U & =\int_{V_{1}}^{V_{2}}\left(\frac{\partial U}{\partial V}\right)_{T} d V=\int_{V_{1}}^{V_{2}} \frac{n^{2} a}{V^{2}} d V=n^{2} a\left[-\frac{1}{V}\right]_{V_{1}}^{V_{2}}=n^{2} a\left[\frac{1}{V_{1}}-\frac{1}{V_{2}}\right] \\
\Delta U & =(2 \mathrm{~mol})^{2} 1.35 \mathrm{~L}^{2} \cdot \mathrm{~atm} / \mathrm{mol}^{2}\left[\frac{1}{1.00 \mathrm{~L} / \mathrm{mol}}-\frac{1}{24.8 \mathrm{~L} / \mathrm{mol}}\right] \\
& =5.18 \mathrm{~L} \cdot \mathrm{~atm} \cdot \frac{101 \mathrm{~J}}{1 \mathrm{~L} \cdot \mathrm{~atm}}=523 . \mathrm{J}
\end{aligned}
$$

Work (w)

$$
\begin{aligned}
& \left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \rightarrow p=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \\
& \left.w=-\int_{V_{1}}^{V_{2}} p d V=-\int_{V_{1}}^{V_{2}}\left[\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}\right] d V=-n R T \int_{V_{1}}^{V_{2}} \frac{1}{V-n b} d V+n^{2} a\right]_{V_{1}}^{V_{2}} \frac{1}{V^{2}} d V \\
& w=-n R T[\ln (V-b)]_{V_{1}}^{V_{2}}+n^{2} a\left[-\frac{1}{V}\right]_{V_{1}}^{V_{2}}=-n R T \ln \left[\frac{V_{2}-n b}{V_{1}-n b}\right]+n^{2} a\left[\frac{1}{V_{1}}-\frac{1}{V_{2}}\right] \\
& w=-(2 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K}) \ln \left[\frac{24.8-2 \cdot 0.039}{1.0-2 \cdot 0.039}\right]+(2 \mathrm{~mol})^{2}\left(1.35 \mathrm{~L}^{2} \cdot a \mathrm{~atm} / \mathrm{mol}^{2}\right)\left[\frac{1}{1.0 \mathrm{~L}}-\frac{1}{24.8 \mathrm{~L}}\right] \\
& =-16,290 \mathrm{~J} / \mathrm{mol}+(5.40 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol}) \cdot \frac{101 \mathrm{~J}}{1 \mathrm{~L} \cdot \mathrm{~atm}}=-16290 \mathrm{~J}+545 \mathrm{~J} \\
& =-15,745 \mathrm{~J} \simeq-15.7 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Note: Observe that the work is less negative than it would be if there were no attractive forces (i.e. if $\mathrm{a}=0$). This is because some of the work energy released in the expansion must be used to pull the attractive molecules further from each other.

Heat (q)

$$
\begin{aligned}
& \Delta \mathrm{U}=+523 \mathrm{~J} / \mathrm{mol} \\
& \mathrm{w}=-15745 \mathrm{~J} / \mathrm{mol} \\
& \mathrm{q}=\Delta \mathrm{U}-\mathrm{w}=+523-(-15745)=+16,268 \mathrm{~J} / \mathrm{mol} \approx+16.3 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$2.16 T_{1}=\frac{P_{1} V_{1}}{n R}=\frac{(1.0 \mathrm{~atm})(22.4 \mathrm{~L})}{(1 \mathrm{~mol})(0.082 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})}=273 \mathrm{~K}$
$T_{2}=\frac{P_{2} V_{2}}{n R}=\frac{(1.0 \mathrm{~atm})(44.8 \mathrm{~L})}{(1 \mathrm{~mol})(0.082 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})}=546 \mathrm{~K}$
$T_{3}=\frac{P_{3} V_{3}}{n R}=\frac{(0.50 \mathrm{~atm})(44.8 \mathrm{~L})}{(1 \mathrm{~mol})(0.082 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})}=273 \mathrm{~K}$
$C_{V, m}=(3 / 2) R=1.5(8.31 \mathrm{~J} / \mathrm{mol} \cdot K)=12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$C_{p, m}=C_{V, m}+R=12.5+8.3=20.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Step $1 \rightarrow 2$ (Constant Pressure)

$$
\begin{aligned}
& w=-p\left(V_{2}-V_{1}\right)=(-1.0 \mathrm{~atm})(44.8 \mathrm{~L}-22.4 \mathrm{~L})=-22.4 \mathrm{~L} \cdot \mathrm{~atm} \cdot \frac{101 \mathrm{~J}}{1 \mathrm{~L} \cdot \mathrm{~atm}}=-2260 \mathrm{~J} \\
& \Delta U=n C_{V, m}\left(T_{2}-T_{1}\right)=(1 \mathrm{~mol})(12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(546 \mathrm{~K}-273 \mathrm{~K})=+3410 \mathrm{~J} \\
& q=\Delta H=n C_{p, m}\left(T_{2}-T_{1}\right)=(1 \mathrm{~mol})(20.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(546 \mathrm{~K}-273 \mathrm{~K})=+5680 \mathrm{~J}
\end{aligned}
$$

Step $2 \rightarrow 3$ (Constant Volume)

$$
\begin{aligned}
& \mathrm{w}=0 \\
& q=\Delta U=n C_{V, m}\left(T_{3}-T_{2}\right)=(1 \mathrm{~mol})(12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K}-546 \mathrm{~K})=-3410 \mathrm{~J} \\
& \Delta H=n C_{p, m}\left(T_{3}-T_{2}\right)=(1 \mathrm{~mol})(20.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K}-546 \mathrm{~K})=-5680 \mathrm{~J}
\end{aligned}
$$

Step $3 \rightarrow \mathbf{1}$ (Isothermal)

$$
\begin{aligned}
& \Delta \mathrm{U}=\Delta \mathrm{H}=0 \\
& w=-n R T_{3} \ln \left(V_{1} / V_{3}\right)=-(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K}) \ln (22.4 / 44.8)=+1570 \mathrm{~J} \\
& \mathrm{q}=-\mathrm{w}=-1570 \mathrm{~J}
\end{aligned}
$$

Totals:

$$
\begin{aligned}
& \Delta \mathrm{U}_{\text {tot }}=\Delta \mathrm{U}_{1 \rightarrow 2}+\Delta \mathrm{U}_{2 \rightarrow 3}+\Delta \mathrm{U}_{3 \rightarrow 1}=+3410-3410+0=0 \mathrm{~J} \\
& \Delta \mathrm{H}_{\text {tot }}=\Delta \mathrm{H}_{1 \rightarrow 2}+\Delta \mathrm{H}_{2 \rightarrow 3}+\Delta \mathrm{H}_{3 \rightarrow 1}=+5680-5680+0=0 \mathrm{~J} \\
& \mathrm{~W}_{\text {tot }}=\mathrm{w}_{1 \rightarrow 2}+\mathrm{w}_{2 \rightarrow 3}+\mathrm{w}_{3 \rightarrow 1}=-2260+0+1570=-690 \mathrm{~J} \\
& \mathrm{q}_{\text {tot }}=\mathrm{q}_{1 \rightarrow 2}+\mathrm{q}_{2 \rightarrow 3}+\mathrm{q}_{3 \rightarrow 1}=+5680-3410-1570=+700 \mathrm{~J}
\end{aligned}
$$

Note: As expected, $\Delta \mathrm{U}_{\text {tot }}=\Delta \mathrm{H}_{\text {tot }}=0$ around the cycle.
U and H are State Functions

However, $\mathrm{q}_{\text {tot }} \neq 0$ and $\mathrm{w}_{\text {tot }} \neq 0$ around the cycle.
q and w are not State Functions
To within roundoff error, $\mathrm{w}_{\text {tot }}+\mathrm{q}_{\text {tot }} \approx 0$ because $\mathrm{q}_{\text {tot }}+\mathrm{w}_{\text {tot }}=\Delta \mathrm{U}_{\text {tot }}=0$
$2.17 \mathrm{n}=1.0 \mathrm{~mol}$
Note: The initial temperature and pressure (required for the calculation) was not given in the problem. We'll use $\mathrm{T}_{1}=298 \mathrm{~K}, \mathrm{p}_{1}=1.0 \mathrm{~atm}$.

$$
\begin{aligned}
& V_{1}=\frac{n R T_{1}}{p_{1}}=\frac{(1 \mathrm{~mol})(0.082 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K})}{1.0 \mathrm{~atm}}=24.4 \mathrm{~L} \\
& \mathrm{C}_{\mathrm{p}, \mathrm{~m}}=(7 / 2) \mathrm{R}=(7 / 2)(8.31)=29.1 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \\
& \mathrm{C}_{\mathrm{v}, \mathrm{~m}}=\mathrm{C}_{\mathrm{p}, \mathrm{~m}}-\mathrm{R}=29.1-8.3=20.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
\end{aligned}
$$

Step a: Constant volume heating to $\mathbf{p}_{2}=2 \mathbf{p}_{1}=2 \mathrm{~atm}$

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\frac{p_{2}}{p_{1}}=2 \rightarrow \mathrm{~T}_{2}=2 \mathrm{~T}_{1}=2(298)=596 \mathrm{~K} \\
& \mathrm{w}=0 \\
& q=\Delta U=n C_{V, m}\left(T_{2}-T_{1}\right)=(1 \mathrm{~mol})(20.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(596 \mathrm{~K}-298 \mathrm{~K})=+6190 \mathrm{~J} \\
& \Delta H=n C_{p, m}\left(T_{2}-T_{1}\right)=(1 \mathrm{~mol})(29.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(596 \mathrm{~K}-298 \mathrm{~K})=+8670 \mathrm{~J}
\end{aligned}
$$

Step b: Adiabatic Expansion from $\mathrm{T}_{2}=596 \mathrm{~K}$ back to $\mathrm{T}_{3}=298 \mathrm{~K}$

$$
\begin{aligned}
& \mathrm{q}=0 \\
& w=\Delta U=n C_{V, m}\left(T_{3}-T_{2}\right)=(1 \mathrm{~mol})(20.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K}-546 \mathrm{~K})=-6190 \mathrm{~J} \\
& \Delta H=n C_{p, m}\left(T_{3}-T_{2}\right)=(1 \mathrm{~mol})(29.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K}-546 \mathrm{~K})=-8670 \mathrm{~J}
\end{aligned}
$$

We'll need V_{3} for last step.

$$
\begin{aligned}
& \left(\frac{T_{2}}{T_{3}}\right)=\left(\frac{V_{3}}{V_{2}}\right)^{R / C_{V, m}} \rightarrow \frac{V_{3}}{V_{2}}=\left(\frac{T_{2}}{T_{3}}\right)^{C_{V, m} / R}=\left(\frac{596}{298}\right)^{20.88 .31}=5.66 \\
& V_{3}=5.66 \mathrm{~V}_{2}=5.66(24.4)=138.3 \mathrm{~L}
\end{aligned}
$$

Step c: Isothermal Compression from $\mathrm{V}_{3}=138.3 \mathrm{~L}$ to $\mathrm{V}_{1}=22.4 \mathrm{~L}$

$$
\begin{aligned}
& \Delta \mathrm{U}=\Delta \mathrm{H}=0 \\
& w=-n R T \ln \left(V_{1} / V_{3}\right)=-(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}) \ln (24.4 / 138.3)=+4300 \mathrm{~J} \\
& \mathrm{q}=-\mathrm{w}=-4300 \mathrm{~J}
\end{aligned}
$$

Totals:

$$
\begin{aligned}
& \Delta \mathrm{U}_{\text {tot }}=+6190-6190+0=0 \\
& \Delta \mathrm{H}_{\text {tot }}=+8670-8670+0=0 \\
& \mathrm{w}_{\text {tot }}=0-6190+4300=-1890 \mathrm{~J} \neq 0 \\
& \mathrm{q}_{\text {tot }}=+6190+0-6190=+1890 \mathrm{~J} \neq 0
\end{aligned}
$$

