Chapter 2 - Homework

2.1 Calculate the constant pressure molar heat capacity of $\mathrm{Cl}_{2}(\mathrm{~g})$, assuming that (a) the molecules are rigid, and (b) the molecules can vibrate.
2.2 Calculate the constant pressure molar heat capacity of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$, assuming that (a) the molecules are rigid, and (b) the molecules can vibrate.
2.3 Calculate the constant pressure molar heat capacity of $\mathrm{CO}_{2}(\mathrm{~g})$, assuming that (a) the molecules are rigid, and (b) the molecules can vibrate.
2.4 A sample of 1 mole of Ar is expanded isothermally at $0^{\circ} \mathrm{C}$ from 22.4 L to 44.8 L . Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for the expansion occurring:
(a) Reversibly
(b) at constant external pressure equal to the final pressure of the gas.
(c) freely (against zero pressure)
2.5 A sample consisting of 1 mole of a perfect gas atoms, for which $C_{v, m}=(3 / 2) R$, initially at $\mathrm{p}_{1}=1 \mathrm{~atm}$ and $\mathrm{T}_{1}=300 \mathrm{~K}$ is heated reversibly to 400 K at constant volume.
Calculate the final pressure, $\Delta \mathrm{U}, \mathrm{q}$ and w for this process.
2.6 A sample of 1 mole of $\mathrm{H} 2(\mathrm{~g})$ is condensed reversibly and isothermally to liquid water at $100^{\circ} \mathrm{C}$. The standard enthalpy of vaporization of water at $100^{\circ} \mathrm{C}$ is $40.6 \mathrm{~kJ} / \mathrm{mol}$.
Calculate w, q, $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for this process.
2.7 A 15.g strip of magnesium ($\mathrm{M}=24.3$) is place in a beaker of dilute $\mathrm{HCl}(\mathrm{aq})$. Calculate the work involved in this reaction. The atmospheric pressure is 1.0 atm and the temperature is $23^{\circ} \mathrm{C}$.
2.8 Solid tungsten will react with gaseous carbon monoxide to form solid tungsten hexacarbonyl according to the equation: $\mathrm{W}(\mathrm{s})+6 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{W}(\mathrm{CO})_{6}(\mathrm{~s})$. What is the work involved when two moles of $\mathrm{W}(\mathrm{s})$ reacts with $\mathrm{CO}(\mathrm{g})$ to form two moles of $\mathrm{W}(\mathrm{CO})_{6}(\mathrm{~s})$ at $150^{\circ} \mathrm{C}$ and 1 bar pressure?
2.9 The constant pressure molar heat capacity of a perfect gas is given by:
$\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\mathrm{a}+\mathrm{bT}, \mathrm{a}=20.17 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{b}=0.37 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}^{1}$
Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ when the temperature of 1 . mole of the gas is raised from $25^{\circ} \mathrm{C}$ to $200{ }^{\circ} \mathrm{C}$
(a) at constant pressure
(b) at constant volume
2.10 A sample of carbon dioxide, $\mathrm{CO}_{2}(\mathrm{~g})(\mathrm{M}=44)$ of mass 2.45 g at $27 .{ }^{\circ} \mathrm{C}$ is allowed to expand reversibly and adiabatically from 500 mL to 3.0 L .
The constant pressure molar heat capacity of CO_{2} is $37.11 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{K}$.
What is the work involved in this expansion?
2.11 When 3. mol of O_{2} is heated at a constant pressure of 3.25 atm , its temperature increases from 260 K to 285 K . Given that the constant pressure molar heat capacity of O_{2} is $29.4 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$, calculate $\mathrm{q}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for this process.
2.12 A sample consisting of 1.0 mol of a perfect gas with $\mathrm{C}_{\mathrm{v}}=20.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ is initially at 3.25 atm and 310 K . It undergoes a reversible adiabatic expansion to a final pressure of 2.50 atm . Calculate the final volume and temperature and the work involved in this process.
2.13 A certain liquid has an enthalpy of vaporization, $\Delta_{\text {vap }} \mathrm{H}^{\mathrm{o}}=26.0 \mathrm{~kJ} / \mathrm{mol}$. Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{H}$ and $\Delta \mathrm{U}$ when 0.50 mol is vaporized at 250 K and 750 torr.
2.14 The standard enthalpies of formation of ethylbenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{l})=\mathrm{C}_{8} \mathrm{H}_{10}\right), \mathrm{CO}_{2}(\mathrm{~g})$, and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-12.5 \mathrm{~kJ} / \mathrm{mol},-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $-285.8 \mathrm{~kJ} / \mathrm{mol}$, respectively. Calculate the standard enthalpy of combustion of ethylbenzene (at $25^{\circ} \mathrm{C}$).
2.15 For a van der Waals gas, the internal pressure is: $\pi_{\mathrm{T}}=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=\frac{\mathrm{n}^{2} \mathrm{a}}{\mathrm{V}^{2}}$.

For $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{a}=1.35 \mathrm{~L}^{2} \mathrm{~atm} / \mathrm{mol}^{2}$ and $\mathrm{b}=0.039 \mathrm{~L} / \mathrm{mol}$. Calculate $\Delta \mathrm{U}, \mathrm{q}$ and w for the expansion of 2. moles of $\mathrm{N}_{2} \mathrm{~g}$) from 1.0 L to 24.8 L .
2.16 A sample consisting of 1 . mol of perfect gas atoms (for which $C_{V, m}=(3 / 2) R$) is taken through the cycle in the figure shown below.
(a) Determine the temperature at the points 1,2 and 3.
(b) Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for each step, and for the overall cycle.

2.17 A sample consisteing of 1 . mol of a perfect gas (for which $C_{p, m}=(7 / 2) R$) is initially at $\mathrm{T}_{1}=298 \mathrm{~K}$ and $\mathrm{p}_{1}=1$. atm. The gas is put through the following cycle: (a) constant volume heating to twice its initial pressure, (b) reversible adiabatic expansion back to its initial temperature, (c) reversible isothermal compression back to $p=1$. atm.
Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for each step, and for the overall cycle.

