Chapter 21 Homework Questions

- **21.1** The rate of formation of C in the reaction $2 \text{ A} + \text{B} \rightarrow 2 \text{ C} + 3 \text{ D}$ is 2.7 Ms⁻¹. State the reaction rate, and the rates of formation or consumption of A, B, and D.
- **21.2** The rate law for the reaction, $A + B \rightarrow$ Products, is of the form, $r = k[A]^x[B]^y$. From the initial rate data for this reaction given below, determine the reaction orders, "x" and "y", and the rate constant, k (give units).

$[A_0]$	[B ₀]	ro
0.10 M	2.0 M	8.50 Ms ⁻¹
0.30	2.0	2.83
0.30	3.0	7.80

- **21.3** At 518 °C, the half-life for the decomposition of gaseous acetaldehyde (aka ethanal, CH₃CHO) is 410 s when the initial pressure is 363 torr. The half-life is 880 s when the initial pressure is 169 torr. Determine the order of the reaction.
- **21.4** The reaction, $A \rightarrow P$, is of order "x"; i.e. Rate = $k[A]^x$. When $[A_o] = 0.4$ M, the half-life of the reaction is 200 s. When $[A]_o = 0.2$ M, the half-life of the reaction is 50 s. What is the order of this reaction (i.e. what is "x")?
- **21.5** The reaction, $A \rightarrow P$, is of order "x"; i.e. Rate = k[A]^x. When $[A_o] = 0.1$ M, the half-life of the reaction is 200 s. When $[A]_o = 0.25$ M, the half-life of the reaction is 126 s. What is the order of this reaction (i.e. what is "x")?
- **21.6** Consider a second order reaction, $A \rightarrow$ Products. When $[A]_0 = 1.30$ M, the half life of the reaction is 42 seconds.
 - (a) What is the rate constant, k, for this reaction?
 - (b) When $[A]_0 = 1.30$ M, what will the concentration be 60 seconds after the start of the the reaction.
 - (c) When $[A]_0 = 1.30$ M, how long will it take for the concentration of A to decrease to 0.80 M?
- **21.7** Consider a third order reaction, $A \rightarrow$ Products. When the initial concentration is $[A]_0 = 0.80$ M, it takes 6.40 seconds for the concentration to decrease to [A] = 0.50 M.
 - (a) Calculate the rate constant, k.
 - (b) When $[A]_0 = 0.80$ M, what is the concentration after 20 seconds.
 - (c) When $[A]_0 = 0.80$ M, how long does it take for the concentration to decrease to 0.30 M

- **21.8** Consider a reaction, A \rightarrow Products, which is of order 3/2; i.e. $Rate = -\frac{d[A]}{dt} = k[A]^{3/2}$. The rate constant for this reaction is k = 0.03 M^{-1/2}s⁻¹.
 - (a) Determine the half-life for this reaction when $[A]_0 = 0.50 \text{ M}$
 - (b) If the initial concentration of A is 0.50 M, what will the concentration of A be after 25 s?

(c) If the initial concentration of A is 0.50 M, how long will it take for the concentration to decrease to 0.20 M?

- 21.9 Consider the competitive first-order reactions, $A \xrightarrow{k_1} B$ $A \xrightarrow{k_2} C$
 - (a) If one begins an experiment with [A]_o = 1.20 M, it is found that [B] = 0.90 M at the conclusion of the experiment.
 What is the ratio of the two rate constants, k₁/k₂?
 - (b) It is found that the rate constant for the first reaction is $k_1 = 0.60 \text{ s}^{-1}$. what is the concentration, [C], 2.0 seconds after the start of the reaction?
- **21.10** The rate constant for a first order reaction is $1.5 \times 10^{-3} \text{ s}^{-1}$ at 40 °C and $8.6 \times 10^{-2} \text{ s}^{-1}$ at 80 °C.
 - (a) Calculate the Arrhenius parameters, A and E_a , for this reaction.
 - (b) Calculate the rate constant of this reaction at 130 °C.
 - (c) Calculate the temperature at which the half-life of this reaction is 200 s.
- **21.11** The Transition State Theory Equation for the rate constant is:

$$k = \frac{RT}{N_A h} e^{\frac{\Delta S^{\pm}}{R}} e^{-\frac{\Delta H^{\pm}}{RT}}$$
 R, N_A and h are universal constants:
$$\frac{R}{N_A h} = \frac{8.31}{(6.02x10^{23})(6.63x10^{-34})} = 2.1x10^{10}$$

For a given kinetics experiment, a plot of ln(k/T) vs. 1/T was a straight line with Slope = -5450 K and Intercept = +12.80

Calculate the reaction's Activation Enthalpy, ΔH^{\ddagger} (in kJ/mol), and the Activation Entropy, ΔS^{\ddagger} (in J/mol-K).

21.12 One theory of rate constants for bimolecular gas phase reactions is "Collision Theory". The collision theory form for the rate constant is: $k = C\sqrt{T}e^{-\frac{E_o}{RT}}$, where C is a constant, and E_o is the threshold energy for reaction.

Develop and expression relating the threshold energy, E_o, to the Arrhenius Activation Energy.

21.13 The reaction mechanism for the reaction, $A_2 + 2 B \rightarrow 2 P$ is:

$A_2 \rightleftharpoons 2 A$	Rapid Pre-Equilibrium
$A + B \rightarrow P$	Slow RDS (this reaction occurs twice)

Deduce the rate law for d[P]/dt for this mechanism.

21.14 The reaction, $2 A + B \rightarrow P$ (P is the product) proceeds by the following mechanism.

$$\begin{array}{c} k_1 \\ A + B _ AB \\ k_{-1} \\ k_2 \\ AB + A \rightarrow P \end{array}$$

"AB" is an intermediate present in steady-state concentration. Use the steady-state approximation on [AB] to develop an expression for the rate of formation of P as a function of [A], [B], k_1 , k_{-1} and k_2 .

Note: For Photochemistry questions: On an exam, you would be given the following relationship between photon wavelength (λ) and energy (E_{ph}):

$$E_{ph} = \frac{hc}{\lambda}$$
 $h = 6.63 \times 10^{-34} \text{ J s}$, $c = 3.00 \times 10^8 \text{ m/s}$

21.15 In a photochemical reaction, $A \rightarrow 2 B + C$, the quantum yield with 500 nm light is 210 mol A reacted/mol photon absorbed. After exposure of 300 mmol of A to light, 2.28 mmol of B is formed.

How many photons were absorbed?

21.16 In an experiment to determine the reaction quantum yield of a photochemical reaction,
 A → Products, the reactant was exposed to 490 nm radiation from a 100 W source for 45, inin. The intensity of the transmitted light was 40% of the intensity of the incident light. As a result of the radiation, 0.344 mol of the reactant decomposed.

Determine the quantum yield, Φ_R , for this reaction.

21.17 Consider the quenching of an organic fluorophore with a fluorescent lifetime, $\tau_0 = 6.0$ ns. A quenching agent with a quenching rate constant, $k_Q = 3.0 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$, is added to the solution.

Predict the quencher concentration, [Q], required to obtain 60% quenching of the fluorescence.

21.18 In a pulsed laser fluorescence experiment on Napthalene (dissolved in hexane), the fluorescence intensity 35 ns after the experiment begins is 65% of the intensity at the beginning of the experiment. In a separate experiment, it was determined that the fluorescence rate constant is: $k_F = 4.8 \times 10^6 \text{ s}^{-1}$. Calculate (a) the singlet state lifetime, τ_0 (in ns), and (b) the fluorescence quantum yield of napthalene.

21.19 The hydrolysis of the substrate, N-glutaryl-L-phenylalanine-p-nitroanilide [GPNA], to pnitroaniline and N-glutaryl-L-phenylanine is catalyzed by α -chymotrypsin. When $[E]_0 = 4.0 \times 10^{-6}$ M, it is found that $v_0=3.7 \times 10^{-8}$ M/s when $[S]=2.5 \times 10^{-4}$ M and $v_0=9.8 \times 10^{-8}$ M/s when $[S]=1.0 \times 10^{-3}$ M.

Determine the slope and intercept of the Lineweaver-Burk plot and, from these, K_M , V_m , and k_2 for this reaction.

21.20 Consider an enzyme catalyzed reaction with $[E]_o=2$ mM, $K_M=20$ mM, and $V_M=80$ mM/s

(a) The slope of the L $(A) = 0.012 \text{ s/m}$	-		$(\mathbf{D}) 0.25$	
(A) 0.013 s/mM	(B) 4 s-1	(C) 6.3×10^{-4} mM/s	(D) 0.25 s	
(b) The intercept of th (A) 0.013 s/mM	(D) 0.25 s			
(c) The "turnover number", k_2 , is (A) 10 (B) 0.10 s-1 (C) 40 s-1 (D) 0.025				