Chapter 21 Homework Questions

21.1 The rate of formation of C in the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow 2 \mathrm{C}+3 \mathrm{D}$ is $2.7 \mathrm{Ms}^{-1}$. State the reaction rate, and the rates of formation or consumption of A, B, and D.
21.2 The rate law for the reaction, $A+B \rightarrow$ Products, is of the form, $r=k[A]^{x}[B]^{y}$. From the initial rate data for this reaction given below, determine the reaction orders, " x " and " y ", and the rate constant, k (give units).

$\left[\mathbf{A}_{\mathbf{o}}\right]$	$\left[\mathbf{B}_{\mathbf{o}}\right]$	$\mathbf{r}_{\mathbf{o}}$
0.10 M	2.0 M	$8.50 \mathrm{Ms}^{-1}$
0.30	2.0	2.83
0.30	3.0	7.80

21.3 At $518^{\circ} \mathrm{C}$, the half-life for the decomposition of gaseous acetaldehyde (aka ethanal, $\mathrm{CH}_{3} \mathrm{CHO}$) is 410 s when the initial pressure is 363 torr. The half-life is 880 s when the initial pressure is 169 torr. Determine the order of the reaction.
21.4 The reaction, $A \rightarrow P$, is of order " x "; i.e. Rate $=k[A]^{x}$. When $\left[A_{o}\right]=0.4 \mathrm{M}$, the half-life of the reaction is 200 s . When $[\mathrm{A}]_{0}=0.2 \mathrm{M}$, the half-life of the reaction is 50 s . What is the order of this reaction (i.e. what is " x ")?
21.5 The reaction, $A \rightarrow P$, is of order " x "; i.e. Rate $=k[A]^{x}$. When $\left[A_{0}\right]=0.1 \mathrm{M}$, the half-life of the reaction is 200 s . When $[\mathrm{A}]_{0}=0.25 \mathrm{M}$, the half-life of the reaction is 126 s . What is the order of this reaction (i.e. what is " x ")?
21.6 Consider a second order reaction, $\mathrm{A} \rightarrow$ Products. When $[\mathrm{A}]_{\mathrm{o}}=1.30 \mathrm{M}$, the half life of the reaction is 42 seconds.
(a) What is the rate constant, k , for this reaction?
(b) When $[\mathrm{A}]_{\mathrm{o}}=1.30 \mathrm{M}$, what will the concentration be 60 seconds after the start of the the reaction.
(c) When $[\mathrm{A}]_{0}=1.30 \mathrm{M}$, how long will it take for the concentration of A to decrease to 0.80 M?
21.7 Consider a third order reaction, $\mathrm{A} \rightarrow$ Products. When the initial concentration is $[\mathrm{A}]_{0}=0.80 \mathrm{M}$, it takes 6.40 seconds for the concentration to decrease to $[\mathrm{A}]=0.50 \mathrm{M}$.
(a) Calculate the rate constant, k .
(b) When $[\mathrm{A}]_{0}=0.80 \mathrm{M}$, what is the concentration after 20 seconds.
(c) When $[\mathrm{A}]_{0}=0.80 \mathrm{M}$, how long does it take for the concentration to decrease to 0.30 M
21.8 Consider a reaction, $\mathrm{A} \rightarrow$ Products, which is of order 3/2; i.e. Rate $=-\frac{d[A]}{d t}=k[A]^{3 / 2}$. The rate constant for this reaction is $k=0.03 \mathrm{M}^{-1 / 2} \mathrm{~s}^{-1}$.
(a) Determine the half-life for this reaction when $[\mathrm{A}]_{0}=0.50 \mathrm{M}$
(b) If the initial concentration of A is 0.50 M , what will the concentration of A be after 25 s ?
(c) If the initial concentration of A is 0.50 M , how long will it take for the concentration to decrease to 0.20 M ?
21.9 Consider the competitive first-order reactions,
$A \xrightarrow{k_{1}} B$
$A \xrightarrow{k_{2}} C$
(a) If one begins an experiment with $[\mathrm{A}]_{\mathrm{o}}=1.20 \mathrm{M}$, it is found that $[\mathrm{B}]=0.90 \mathrm{M}$ at the conclusion of the experiment.
What is the ratio of the two rate constants, $\mathrm{k}_{1} / \mathrm{k}_{2}$?
(b) It is found that the rate constant for the first reaction is $\mathrm{k}_{1}=0.60 \mathrm{~s}^{-1}$. what is the concentration, $[\mathrm{C}], 2.0$ seconds after the start of the reaction?
21.10 The rate constant for a first order reaction is $1.5 \times 10^{-3} \mathrm{~s}^{-1}$ at $40^{\circ} \mathrm{C}$ and $8.6 \times 10^{-2} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$.
(a) Calculate the Arrhenius parameters, A and E_{a}, for this reaction.
(b) Calculate the rate constant of this reaction at $130{ }^{\circ} \mathrm{C}$.
(c) Calculate the temperature at which the half-life of this reaction is 200 s .
21.11 The Transition State Theory Equation for the rate constant is:
$k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} \mathrm{R}, \mathrm{N}_{\mathrm{A}}$ and h are universal constants:
$\frac{R}{N_{A} h}=\frac{8.31}{\left(6.02 \times 10^{23}\right)\left(6.63 \times 10^{-34}\right)}=2.1 \times 10^{10}$
For a given kinetics experiment, a plot of $\ln (\mathrm{k} / \mathrm{T})$ vs. $1 / \mathrm{T}$ was a straight line with Slope $=-5450 \mathrm{~K}$ and Intercept $=+12.80$

Calculate the reaction's Activation Enthalpy, $\Delta \mathrm{H}^{\ddagger}$ (in $\mathrm{kJ} / \mathrm{mol}$), and the Activation Entropy, $\Delta \mathrm{S}^{\ddagger}$ (in J/mol-K).
21.12 One theory of rate constants for bimolecular gas phase reactions is "Collision Theory". The collision theory form for the rate constant is: $k=C \sqrt{T} e^{-\frac{E_{o}}{R T}}$, where C is a constant, and E_{o} is the threshold energy for reaction.

Develop and expression relating the threshold energy, E_{o}, to the Arrhenius Activation Energy.
21.13 The reaction mechanism for the reaction, $\mathrm{A}_{2}+2 \mathrm{~B} \rightarrow 2 \mathrm{P}$ is:

$$
\begin{array}{ll}
\mathrm{A}_{2} \rightleftharpoons 2 \mathrm{~A} & \text { Rapid Pre-Equilibrium } \\
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P} & \text { Slow RDS (this reaction occurs twice) }
\end{array}
$$

Deduce the rate law for $\mathrm{d}[\mathrm{P}] / \mathrm{dt}$ for this mechanism.
21.14 The reaction, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{P}$ (P is the product) proceeds by the following mechanism.
k_{1}
$\mathrm{A}+\mathrm{B} \underset{\mathrm{k}_{-1}}{\sim} \mathrm{AB}$
$\mathrm{AB}+\mathrm{A} \xrightarrow{\rightarrow} \mathrm{P}$
"AB" is an intermediate present in steady-state concentration. Use the steady-state approximation on $[\mathrm{AB}]$ to develop an expression for the rate of formation of P as a function of [A], [B], $\mathrm{k}_{1}, \mathrm{k}_{-1}$ and k_{2}.

Note: For Photochemistry questions: On an exam, you would be given the following relationship between photon wavelength (λ) and energy (E_{ph}):

$$
\mathrm{E}_{\mathrm{ph}}=\frac{\mathrm{hc}}{\lambda} \quad \mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

21.15 In a photochemical reaction, $\mathrm{A} \rightarrow 2 \mathrm{~B}+\mathrm{C}$, the quantum yield with 500 nm light is 210 mol A reacted $/ \mathrm{mol}$ photon absorbed. After exposure of 300 mmol of A to light, 2.28 mmol of B is formed.

How many photons were absorbed?
21.16 In an experiment to determine the reaction quantum yield of a photochemical reaction, $\mathrm{A} \rightarrow$ Products, the reactant was exposed to 490 nm radiation from a 100 W source for 45 ,inin. The intensity of the transmitted light was 40% of the intensity of the incident light. As a result of the radiation, 0.344 mol of the reactant decomposed.
Determine the quantum yield, Φ_{R}, for this reaction.
21.17 Consider the quenching of an organic fluorophore with a fluorescent lifetime, $\tau_{0}=6.0 \mathrm{~ns}$. A quenching agent with a quenching rate constant, $\mathrm{k}_{\mathrm{Q}}=3.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, is added to the solution.

Predict the quencher concentration, $[\mathrm{Q}]$, required to obtain 60% quenching of the fluorescence.
21.18 In a pulsed laser fluorescence experiment on Napthalene (dissolved in hexane), the fluorescence intensity 35 ns after the experiment begins is 65% of the intensity at the beginning of the experiment.
In a separate experiment, it was determined that the fluorescence rate constant is:
$\mathrm{k}_{\mathrm{F}}=4.8 \times 10^{6} \mathrm{~s}^{-1}$.
Calculate (a) the singlet state lifetime, τ_{0} (in ns), and (b) the fluorescence quantum yield of napthalene.
21.19 The hydrolysis of the substrate, N -glutaryl-L-phenylalanine-p-nitroanilide [GPNA], to pnitroaniline and N -glutaryl-L-phenylanine is catalyzed by α-chymotrypsin. When $[E]_{0}=4.0 \times 10^{-6} \mathrm{M}$, it is found that $\mathrm{v}_{\mathrm{o}}=3.7 \times 10^{-8} \mathrm{M} / \mathrm{s}$ when $[\mathrm{S}]=2.5 \times 10^{-4} \mathrm{M}$ and $\mathrm{v}_{\mathrm{o}}=9.8 \times 10^{-8} \mathrm{M} / \mathrm{s}$ when $[\mathrm{S}]=1.0 \times 10^{-3} \mathrm{M}$.
Determine the slope and intercept of the Lineweaver-Burk plot and, from these, $\mathrm{K}_{\mathrm{M}}, \mathrm{V}_{\mathrm{m}}$, and k_{2} for this reaction.
21.20 Consider an enzyme catalyzed reaction with $[E]_{0}=2 \mathrm{mM}, \mathrm{K}_{\mathrm{M}}=20 \mathrm{mM}$, and $\mathrm{V}_{\mathrm{M}}=80 \mathrm{mM} / \mathrm{s}$
(a) The slope of the Lineweaver-Burk plot is
(A) $0.013 \mathrm{~s} / \mathrm{mM}$
(B) $4 \mathrm{~s}-1$
(C) $6.3 \times 10^{-4} \mathrm{mM} / \mathrm{s}$
(D) 0.25 s
(b) The intercept of the Lineweaver-Burk plot is
(A) $0.013 \mathrm{~s} / \mathrm{mM}$
(B) $4 \mathrm{~s}-1$
(C) $6.3 \times 10^{-4} \mathrm{mM} / \mathrm{s}$
(D) 0.25 s
(c) The "turnover number", k_{2}, is
(A) 10
(B) $0.10 \mathrm{~s}-1$
(C) $40 \mathrm{~s}-1$
(D) 0.025 s

