Chapter 3 Homework Questions

- 3.1 Calculate ΔS (for the system) when the state of 3. moles of a perfect gas at 25 °C and 1. atm is changed to 125 °C and 5. atm. Note: The constant pressure molar heat capacity of this gas is $C_{p,m} = (5/2)R$,
- **3.2** A sample consisting of 3. moles of a diatomic perfect gas at -73 °C is compressed reversibly and adiabically until the temperature reaches -23. °C. For this gas, $C_{V,m} = 27.5 \text{ J/mol} \cdot \text{K}$. Calculate q, w, ΔU , ΔH and ΔS for this process.
- 3.3 Calculate the changes in entropy of the system and the surroundings when a 14. g sample of N₂(g) [M=28] at 1. bar and 25 °C doubles its volume in
 (a) a reversible isothermal expansion
 - (b) an irreversible isothermal expansion against $p_{ex} = 0$.
 - (c) a reversible adiabatic expansion
- **3.4** The enthalpy of vaporization of chloroform (CHCl₃, M=119.4) is 29.4 kJ/mol at its normal boiling point of 62 °C. For the vaporization of 240. grams of CHCl₃ at its normal boiling point, calculate (a) Δ S of the system and (b) Δ S of the surroundings.
- **3.5** The normal boiling point of ethanol, C_2H_5OH [M=46], is 78 °C. The Enthalpy of Vaporization of ethanol is 38.6 kJ/mol.

Calculate q, w, ΔU , ΔH and ΔS when 150 grams of ethanol vapor is condensed to the liquid at 78 °C and 1 bar pressure.

3.6 The normal melting point of ethanol, C_2H_5OH [M=46], is -114 °C. The Enthalpy of Fusion of ethanol is 9.45 kJ/mol.

Calculate q, w, ΔU , ΔH and ΔS when 150 grams of ethanol liquid crystallizes to the solid at -114 °C and 1 bar pressure.

3.7 The normal boiling point of benzene is 80 °C = 353 K. The enthalpy of vaporization of benzene at its normal boiling point is $\Delta_{vap}H = 35.7$ kJ/mol. The constant pressure molar heat capacities of the liquid and vapor are: $C_{p,m}(l) = 138.7$ J/mol-K and $C_{p,m}(g) = 35.1$ J/mol-K

Consider the vaporization of one mole of superheated benzene at 100 oC. Calculate ΔS_{sys} , ΔS_{surr} , and ΔS_{univ} for this process.

3.8 The standard molar entropy of NH₃(g) is 192.45 J/mol•K at 25 °C. The constant pressure heat capacity is temperature dependent and is given by:

$$C_{p,m} = a + bT + \frac{c}{T^2}$$
 $a = 29.8$, $b = 2.5 \times 10^{-2}$, $c = -1.6 \times 10^5$
Calculate the entropy of 3. moles of NH₃(g) at:
(a) 100 °C
(b) 500 °C

3.9 The constant pressure heat capacity of $F_2(g)$ is temperature dependent and given by:

$$C_{p,m} = a - \frac{b}{T}$$
 a = 39.6 J/mol-K and b = 2.5x10³ J/mol

Consider 100 grams of $F_2(g)$ [M = 38.] initially at a pressure of 2. bar and temperature of 600 °C. Calculate q, w, ΔU , ΔH , ΔS for each of the following processes.

- (a) The gas is cooled to 300 °C at constant pressure.
- (b) The gas is cooled to 300 °C at constant volume
- **3.10** Use the standard molar entropies (at 298 K) in the table below to calculate the reaction entropies, $\Delta_r S^{\circ}$, for the following reactions.
 - (a) $2 \text{ CH}_3\text{CHO}(g) + O_2(g) \rightarrow 2 \text{ CH}_3\text{COOH}(l)$ (b) $\text{Hg}(l) + \text{Cl}_2(g) \rightarrow \text{HgCl}_2(s).$

Compound Sm^o

250.3 J/mol•K
205.1
159.8
76.0
223.1
146.0

3.11 Use the standard Gibbs Energies of Formation (at 298 K) in the table below to calculate the reaction entropies, $\Delta_r S^\circ$, for the following reactions.

(a) $2 \text{ CH}_3\text{CHO}(g) + O_2(g) \rightarrow 2 \text{ CH}_3\text{COOH}(l)$ (b) $H_2(l) + Cl_2(g) \rightarrow H_2Cl_2(g)$

(b) $Hg(l) + Cl_2(g) \rightarrow HgCl_2(s)$.

Compound $\Delta_f G_m^o$

 $\begin{array}{ll} CH_{3}CHO(g) & -128.9 \ kJ/mol \\ CH_{3}COOH(l) & -389.9 \\ HgCl_{2}(s) & -178.6 \end{array}$

3.12 Use the standard molar entropies and the enthalpies of formation in the table below to calculate the standard Gibbs energy change (at 298 K) for the reaction: $4 \text{ HCl}(g) + O_2(g) \rightarrow \text{Cl}_2(g) + 2 \text{ H}_2O(l)$

Compound	Smo	$\Delta_{\rm f} H_{\rm m}^{\rm o}$
HCl(g)	186.9 J/mol•K	-92.3 kJ/mol
$O_2(g)$	205.1	
Cl ₂ (g)	69.9	
$H_2O(l)$	223.1	-285.8

- **3.13** Consider 70. grams of $N_2(g)$ [M=28] initially at 40 °C and 25 L. The gas is compressed isothermally to a final volume of 500 mL. Calculate ΔG for this process.
- 3.14 The change in the Gibbs Energy for a certain constant pressure process is given by: $\Delta G = a + bT^2$, a = +5620 J, $b = 8.0 \times 10^{-2} \text{ J/K}^2$. Calculate ΔS for this process at 30 °C (in J/K)
- **3.15** Calculate the change in Gibbs Energy (in J) of 20. moles of liquid benzene $(C_6H_6, M = 78 \text{ g/mol}, d = 0.88 \text{ g/mL})$ when the pressure on the sample is increased from 1.0 atm to 100 atm.
- **3.16** Calculate the change in Gibbs Energy (in J) of 20. moles of $H_2(g)$ when the pressure on the sample is increased from 1.0 atm to 100 atm at 25 °C.
- A solid has two crystalline forms, A(s) and B(s). For the transition A(s) → B(s), ΔG°= +6.0 kJ/mol (i.e. at 1 bar pressure). The difference in molar volumes of the two forms is Vm(B) Vm(A) = ΔVm = -15 mL/mol. Calculate the pressure, in bar, at which the two forms will be in equilibrium.