Chapter 4 Homework Questions

Where necessary below, you may use the following relation between Molar Volume (V_{m}), Molar Mass (M), and density (ρ): $V_{m}=\frac{M}{\rho}$
4.1 For this question, assume that the molar entropy of iron is constant at $53 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.

Calculate the change in Chemical Potential of iron (in $\mathrm{J} / \mathrm{mol}$) when the temperature is increased from $100^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
4.2 The molar entropy of water is temperature dependent and over the liquid range, follows the equation: $\mathrm{S}_{\mathrm{m}}{ }^{\mathrm{o}}=\mathrm{a}+\mathrm{bT} \mathrm{J} / \mathrm{mol}-\mathrm{K}, \mathrm{a}=1.5 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \mathrm{b}=0.23 \mathrm{~J} / \mathrm{mol}-\mathrm{K}^{3}$ (T is temperature in Kelvins).

Calculate the change in Chemical Potential of water (in $\mathrm{J} / \mathrm{mol}$) when the temperature is increased from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
4.3 The density of liquid benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{M}=78\right)$ is $0.88 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$.

Calculae the change in Chemical Potential of benzene (in $\mathrm{J} / \mathrm{mol}$) when the pressure is increased from 1 . bar to 1,000 bar at $25^{\circ} \mathrm{C}$.
4.4 Calculate the change in Chemical Potential of $\mathrm{CH}_{4}(\mathrm{~g})(\mathrm{in} \mathrm{J} / \mathrm{mol})$ when the pressure is increased from 1. bar to 20 . bar at $25^{\circ} \mathrm{C}$.
4.5 When Benzene ($\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{M}=78$) liquid freezes to the solid at $6.0^{\circ} \mathrm{C}$ and 1 bar , the density changes from $0.88 \mathrm{~g} / \mathrm{cm}^{3}$ to $0.95 \mathrm{~g} / \mathrm{cm}^{3}$. The Enthalpy of Fusion of Benzene is $9.80 \mathrm{~kJ} / \mathrm{mol}$. Calculate the pressure (in bar) required to raise the freezing point to $15.0^{\circ} \mathrm{C}$.
4.6 Calculate the melting point of ice under a pressure of 1000 bar. Assume that the density of ice under these conditions is approximately $0.92 \mathrm{~g} / \mathrm{cm}^{3}$ and that of liquid water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$. The normal melting point (under 100 kPa pressure) is $0^{\circ} \mathrm{C}$ and the Enthalpy of Fusion is $6.01 \mathrm{~kJ} / \mathrm{mol}$.
4.7 The molar volume of a certain solid is $161.0 \mathrm{~cm}^{3} / \mathrm{mol}$ at 1.0 atm and 350.75 K , its normal melting point. The molar volume of the liquid is $163.3 \mathrm{~cm}^{3} / \mathrm{mol}$. At a pressure of 100.0 atm , the melting point changes to 351.26 K .
Calculate the Enthalpy and Entropy of Fusion of the solid.
4.8 The vapor pressure of dichloromethane at $24^{\circ} \mathrm{C}$ is 53.3 kPa , and it's Enthalpy of Vaporization is $28.7 \mathrm{~kJ} / \mathrm{mol}$. Estimate the temperature (in ${ }^{\circ} \mathrm{C}$) at which its vapor pressure is $70 ; 0 \mathrm{kPa}$.
4.9 Napthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}, \mathrm{M}=128\right)$ melts at $80.2^{\circ} \mathrm{C}$. If the vapour pressure of the liquid is 1.3 kPa at $85.8^{\circ} \mathrm{C}$ and 5.3 kPa at $119.3^{\circ} \mathrm{C}$, calculate the following:
(a) The Enthalpy of Vaporization
(b) The normal boiling point
(c) The Entropy of Vaporization at the normal boiling point.
4.10 The normal boiling point of liquid mercury, $\mathrm{Hg}(\mathrm{l})$, is $357^{\circ} \mathrm{C}$. The vapor pressure of liquid mercury at $250^{\circ} \mathrm{C}$ is 75 torr. [1 bar $=750$ torr]

Calculate the Enthalpy of Vaporization of mercury, in $\mathrm{kJ} / \mathrm{mol}$.

