
Page 1 
 CHEM 5200 
 FALL 2018 

 
Lecture:   Tues & Thur - 9:30 AM to 10:50 AM:   
Room: CHEM 252 
Instructor: Martin Schwartz 
Office: Rm 272 
Off. Hrs: Tu-Tr 8:30 AM - 9:30 AM + 11:00 AM - 12:00 AM 

Office Ph.:            565-3542 
Cell/Home Ph.: 382-1370 

E-mail: marty@unt.edu 

Web Site: Chem 5200:  http://www.chem.unt.edu/~mschwart/chem5200/ 
           or: http://www.chem.unt.edu/and navigate (→Faculty→Schwartz→Classes) 

 
  

I.  COURSE MATERIAL 

      
  A.  Text:  Physical Chemistry (9th. Edition)  

      Atkins and de Paula - Optional 
     Student Solutions Manual:  No 

        Note:  I have prepared Homework Problems + Solutions, which 
         will be posted on the Course Web Site 

 

  B.  Chapter                   Title                                  Approx. Starting Date 
                                                            (Week of) 
                                                          
  2. The First Law ................................................................. Aug.  28 
  3. The Second Law ............................................................ Sept. 11 
  4. Physical Transformations of Pure Substances .............. Oct.    2 
  5. Simple Mixtures.............................................................. Oct.    9 
  6. Chemical Equilibrium ..................................................... Oct.   23 
  21. The Rates of Chemical Reactions ................................. Nov.    6 
   
 
  

mailto:marty@unt.edu
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II.  HOMEWORK 

 
  Homework questions will be given in each Chapter Outline, which will be 

provided as part of the Chapter Handout.  Solutions to the Homework will 
be posted on the course web site. 

  Homework will not be collected.  However, you are strongly encouraged 
to work the homework, since problems and questions on the exams will be 
based upon homework and examples worked in class. 

  I will be happy to solve homework problems (as well as answer other 
questions) before or after class 

 
 
 
III.  EXAMS 
 

A.  GENERAL 
 

1. There will be four (4) “hourly” exams.  You will be given the complete 
1 hr-20 min class period for each exam.   

 
 The tests will be primarily problems, but  will include some multiple 

choice questions.  Each hourly exam will count 100 points. 
  
2. There will be a comprehensive final exam. The final will count 200 

points. 
 

3. Either the lowest of the four hourly exams OR one-half of the final 
exam will be dropped prior to computing your average. 

 
4. All exams must be taken during the regularly scheduled times.  

Exams cannot be taken outside the scheduled time. 
 

5. There will not be any makeup exams.  A missed exam will count as 
your dropped test (excluding a well documented serious illness, 
requiring hospitalization). 

 
6. If classes are cancelled by the University on the day of a scheduled 

exam, then the test is automatically scheduled for the next class 
lecture period. 
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B.  TEST SCHEDULE 

 
Exam #    Date 
 
   1 Thursday, Sept. 20 
   2 Thursday, Oct.   11  
   3 Thursday, Nov.    1  
   4 Thursday, Nov.   29 

Final Exam  Thursday, Dec. 13  8:00 AM - 10:00  
 
Note:  I have reserved Rm. 331 of the Chemistry Building for the tests 
so that we can allocate a bit more time than the class period for you to 
complete your tests. 

 
IV. COURSE GRADING  
 

A.  CALCULATION OF AVERAGE 
 

Your average will be calculated as a percentage of 500 points.  The 
average will be calculated after dropping the lower of either: 

 
a)  The lowest of the four hourly exams. 
b)  One-half of the final exam. 

 
 
 

B.  COURSE GRADES  
 
 (Based on average calculated to nearest 0.1% after dropped exam) 

  FEG = Final Exam Grade 
   
  A:  Avg. ≥ 90.0%  
 
  B:  Avg. ≥ 75.0% 
 
  C:  Avg. ≥ 60.0%  
 
  D (or F):  Avg. < 60.0% 
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V.  NOTES 
 

1. You should plan on bringing a Scientific Calculator to the exams. 
 
2. By University regulations, a grade of "I" cannot be given as a substitute for 

a failing grade in a course. 
 
3. Any student caught cheating on an examination will receive an "F" in the 

course and will be reported to the Dean of Students.  In order to protect 
against potential cheating, I must request that students either refrain from 
wearing long-billed caps on test days or turn the bill towards the back. 

 
4. There are no "extra credit" assignments in this course.  Grades will be 

determined on the basis of examination scores, as detailed above. 
 



THE FIRST LAW 
Chapter 2 Outline 

 
HW: Questions are below.  Solutions are in separate file on the course web site. 
 
Sect.        Title and Comments                                                            Required? 
 

1. Work, Heat and Energy YES 
 
2. The Internal Energy YES 
 
3. Expansion Work YES 
 
4. Heat Transactions YES 
 
5. Enthalpy YES 

We have added a section (not in text) on the calculation of heat 
capacities of gases. 

 
6. Adiabatic Changes YES 
 
7. Standard Enthalpy Changes YES 
 
8. Standard Enthalpies of Formation YES 
 
9. The Temperature Dependence of Reaction Enthalpies YES 
 
10. Exact and Inexact Differentials YES 
 
11. Changes in Internal Energy YES 
 
12. The Joule-Thomson Effect SOME 
  You are NOT responsible for interpretation of the J-T coefficient nor for 
  the Joule-Thomson inversion temperature. 
 
Further Information: 
 
2.1  Adiabatic Processes YES 
 
2.2 The Relation Between Heat Capacities YES 



Chapter 2 - Homework 
 
2.1 Calculate the constant pressure molar heat capacity of Cl2(g), assuming that (a) the molecules 

are rigid, and (b) the molecules can vibrate.  
 
2.2 Calculate the constant pressure molar heat capacity of C6H6(g), assuming that (a) the molecules 

are rigid, and (b) the molecules can vibrate.  
 
2.3 Calculate the constant pressure molar heat capacity of CO2(g), assuming that (a) the molecules 

are rigid, and (b) the molecules can vibrate.  
 
2.4 A sample of 1 mole of Ar is expanded isothermally at 0 oC from 22.4 L to 44.8 L.  Calculate 

q, w, ∆U and ∆H for the expansion occurring: 
 (a)  Reversibly 
 (b)  at constant external pressure equal to the final pressure of the gas. 
 (c)  freely (against zero pressure) 
 
2.5 A sample consisting of 1 mole of a perfect gas atoms, for which CV,m = (3/2)R, initially at 

p1 = 1 atm and T1 = 300 K is heated reversibly to 400 K at constant volume. 
 Calculate the final pressure, ∆U, q and w for this process. 
 
2.6 A sample of 1 mole of H2(g) is condensed reversibly and isothermally to liquid water at 

100 oC.  The standard enthalpy of vaporization of water at 100 oC is 40.6 kJ/mol.   
 Calculate w, q, ∆U and ∆H for this process.  
 
2.7 A 15. g strip of magnesium (M=24.3) is place in a beaker of dilute HCl(aq).  Calculate the 

work involved in this reaction.  The atmospheric pressure is 1.0 atm and the temperature is 
23 oC. 

 
2.8 Solid tungsten will react with gaseous carbon monoxide to form solid tungsten hexacarbonyl 

according to the equation:  W(s) + 6 CO(g) → W(CO)6(s).  What is the work involved when 
two moles of W(s) reacts with CO(g) to form two moles of W(CO)6(s) at 150 oC and 1 bar 
pressure? 

 
2.9 The constant pressure molar heat capacity of a perfect gas is given by: 
 p,mC a bT,= +  a = 20.17 J/mol•K , b = 0.37 J/mol•K1 
 Calculate q, w, ∆U and ∆H when the temperature of 1. mole of the gas is raised from 25 oC to 

200 oC 
 (a)  at constant pressure 
 (b)  at constant volume 
 
2.10 A sample of carbon dioxide, CO2(g) (M=44) of mass 2.45 g at 27. oC is allowed to expand 

reversibly and adiabatically from 500 mL to 3.0 L.   
 The constant pressure molar heat capacity of CO2 is 37.11 J/mol•K. 
 What is the work involved in this expansion? 
 
 



2.11 When 3. mol of O2 is heated at a constant pressure of 3.25 atm, its temperature increases from 
260 K to 285 K.  Given that the constant pressure molar heat capacity of O2 is 29.4 J/mol•K, 
calculate q, ∆U and ∆H for this process. 

 
2.12 A sample consisting of 1.0 mol of a perfect gas with CV  = 20.8 J/mol•K is initially at 3.25 atm 

and 310 K.  It undergoes a reversible adiabatic expansion to a final pressure of 2.50 atm.  
Calculate the final volume and temperature and the work involved in this process. 

 
2.13 A certain liquid has an enthalpy of vaporization, ∆vapHo = 26.0 kJ/mol. 
 Calculate q, w, ∆H and ∆U when 0.50 mol is vaporized at 250 K and 750 torr. 
 
2.14 The standard enthalpies of formation of ethylbenzene (C6H5C2H5(l) = C8H10), CO2(g) , and 

H2O(l) are -12.5 kJ/mol, -393.5 kJ/mol and -285.8 kJ/mol, respectively.  
 Calculate the standard enthalpy of combustion of ethylbenzene (at 25 oC). 
 

2.15  For a van der Waals gas, the internal pressure is:  
2

T 2
T

U n a
V V
∂ π = = ∂ 

 . 

 For N2(g), a = 1.35 L2atm/mol2 and b = 0.039 L/mol..  Calculate ∆U, q and w for the expansion 
of 2. moles of N2g) from 1.0 L to 24.8 L. 

 
2.16 A sample consisting of 1. mol of perfect gas atoms (for which CV,m = (3/2)R) is taken through 

the cycle in the figure shown below. 
 (a)  Determine the temperature at the points 1, 2 and 3. 
 (b)  Calculate q, w, ∆U and ∆H for each step, and for the overall cycle. 
 
 
 
 
 
 
 
 
 
 
2.17 A sample consisteing of 1. mol of a perfect gas (for which Cp,m = (7/2)R) is initially at  

T1 = 298 K and p1 = 1. atm.  The gas is put through the following cycle:  (a) constant volume 
heating to twice its initial pressure, (b) reversible adiabatic expansion back to its initial 
temperature, (c)  reversible isothermal compression back to p = 1. atm. 

 Calculate q, w, ∆U and ∆H for each step, and for the overall cycle. 
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Chapter 2

The First Law

1

SYSTEM AND SURROUNDINGS

The system is the part of the universe we are interested in. 

The rest of the universe is the surroundings.

Definitions

2

System
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Definitions

3

Open: Exchange Matter and Energy with 
surroundings.

Closed: Exchange Energy (but not Matter) 
with surroundings.

Isolated: No exchange of Matter or Energy 
with surroundings.

TYPES OF SYSTEMS

Definitions

THE STATE OF A SYSTEM

A system is in a definite state when each of its properties 
has a definite value.

The state of a system is uniquely defined in terms of a few 
state properties that may be linked by an Equation of State

4

PROPERTIES

A state property (a.k.a. state function, state variable) is one which 
has a definite value when the state of the system is specified.

INTENSIVE

Do not depend on the quantity of matter

EXTENSIVE

Do depend on the quantity of matter

The properties of a system may be:
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5

Isothermal: Constant temperature
(e.g. in temperature bath)

Isobaric:* Constant pressure
(e.g. in open room)

Isochoric:* Constant volume
(e.g. in closed container)

Adiabatic: No heat transfer
(e.g. in insulated container
or explosion)

CHANGES IN THE STATE OF A SYSTEM
Definitions

Note:* You are responsible to know the meaning of isothermal
and adiabatic processes.  However, I will furnish 
definitions of isochoric and isobaric processes as needed.

WORK

Defined in physics as Work = Force x Distance.  

In Physical Chemistry, the principal form of work involves changes in 
volume of the system under a pressure (PV Work)

ENERGY

Energy is the capacity of a system to do work.

Definitions

6
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Potential Energy

Kinetic  Energy

Thermal Energy

Forms of Energy / Energy Conversion
Definitions

7

8

Heat:  Transfer of thermal energy.

System

q ≡ Heat

Heat into system:  q > 0

Heat out of system:  q < 0

q > 0 q < 0

Endothermic

Endothermic

Exothermic

Exothermic
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THE FIRST LAW OF THERMODYNAMICS

9

Internal Energy (U)

Internal Energy is the energy of:

(1)  Molecular Translation
(2)  Molecular Rotation
(3)  Molecular Vibration
(4)  Electronic

U = Utrans + Urot + Uvib + Uelect

10

The First Law: Conservation of Internal Energy

U = q + w

q > 0:  Heat flows into system

q < 0:  Heat flows out of system

w > 0:  Work done ON system (Compression)

w < 0:  Work done BY system (Expansion)
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For a finite change of state from A to B the first law 
states:

U = UB - UA = q + w

11

Differential Form of the First Law

For an infinitesimal change, the First Law can be rewritten 
as:

dU = dq + dw

12

SI and Related Unites

SI Units:  1 Pascal (Pa)  1 N/m2

1 kPa = 1000 Pa

1 bar = 1x105 Pa = 100 kPa

Classic Units:  1 torr = 1 mm Hg

1 atmosphere (atm) = 760 torr 

Conversion:  1 atm = 1.013x105 Pa = 101.3 kPa = 1.013 bar
1 kPa = 7.50 torr

You are not responsible for conversion between different
units of pressure.  The relevant conversion factors will be
furnished to you.

Pressure
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13

Volume

Conversion:  1 m3 =1,000 L
1 decimeter3 (dm3) = 1x10-3 m3 = 1.00 L   

Classic Unit:  1 Liter (L)

SI Units:  1 meter3 (m3)

You are not responsible for conversion between different
units of volume.  The relevant conversion factors will be
furnished to you.

14

The Gas Constant, R

SI Units: R = 8.31 J/mol
= 8.31 Pa-m3 /mol-K :  Must use p in Pa and V in m3

Similar: R = 8.31 kPa-L /mol-K :  Must use p in kPa and V in L) 

Classic: R = 0.082 L-atm /mol-K      Must use p in atm and V in dm3 (L) 

We will use whichever form is most suitable for the data.
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15

pex

pex

h1

h2

wby = Fex•(h2-h1) = pex•A •(h2 - h1)

= pex•(A•h2 - A•h1)

= pex•(V2 -V1)

= pex•V

w = -wby = -pex• V

Expansion

V2 > V1

w < 0

Compression

V2 < V1

w > 0

Pressure-Volume Work

16

V

P
ex

V1 V2Vi

Pex,i

w = -Area = -pex,iVi = -pex,1V1 - pex,2V2 - ... 

General Case:  Integral

Special Case:  pex = Constant

w = -Area = -pex(V2 - V1) i.e. we get back our
original equation

Generalization to Variable Pressure
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A reversible process is one that is carried out at an infinitesimal
rate, and which can be reversed at any step along the way.

Irreversible Cooling

Tin

Tin-50 oC

Reversible Cooling

Tin

Tin-T

Irreversible Expansion

Pin

Pin-500 kPa

Reversible Expansion

Pin

Pin-P

Reversible Processes

17

pex

p

Constant Pressure Expansion (or Compression)

18

This process can be carried out either
reversibly by slow heating or cooling the sample

or irreversibly by instantaneously increasing or
decreasing the pressure. 

WORK AND THE FIRST LAW

Some Examples of PV Work
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Work in Chemical Reactions

What is w when 111.6 g (2 mol) of Fe(s) reacts with HCl(aq) 
to give H2(g) at 25 oC: 

(a) At fixed volume?

(b) In an open beaker?

19

When a reaction either produces a gaseous product or removes
a gaseous reactant, then there is work accompanying the reaction.

Consider the reaction of iron with hydrochloric acid:

Fe(s) + 2 HCl(aq)  FeCl2 (aq) + H2(g)

(a) 0
(b) -4950 J  -5.0 kJ

Pex

Pex

Vliq Vgas

Phase transitions occur at constant pressure and temperature

Pex = 1 atm = 101.3 kPa     

T = Tb
o

w = -p(Vgas - Vliq)

w = -nRT 

Vaporization

w = +nRT 

Condensation

w < 0 w > 0

= -pVgas

w = -p(Vliq - Vgas)

= +pVgas

Work in Phase Transitions

What is w for the condensation of 72 g (4 mol) of H2O at 100 oC
and 1 atm?

w = +12,400 J = 12.4 kJ 20
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pex = 0

p

Expansion into a vacuum

21

Pex = 0 

Therefore:  

Reversible:  Therefore, p = pex = nRT/V.

dw = -pdV = -nRT/V dV

Reversible Isothermal Expansion (or Compression)

22

Because T = const.

Expansion

V2 > V1

w < 0

Compression

V2 < V1

w > 0
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Reversible, so p = pex = nRT/V.

dw = -pdV = -nRT/V dV

Reversible Isothermal Expansion (or Compression)

23

Because T = const.

Note that the work for a reversible, isothermal expansion is the
negative of the total curve (yellow + green).

This is greater than the negative work for an irreversible, isothermal
expansion, which is the yellow portion of the area.

This is general.  You can get more work from a reversible process
than an irreversible process.

Example:  2 mol of He is expanded isothermally at 22oC (295 K)
from 22 L to  to 31.7 L.

24

Reversible isothermal expansion

Irreversible isothermal expansion in which the external pressure is
suddenly dropped to the final pressure. 

Calculate w for (a)  a reversible isothermal expansion
(b)  irreversible isothermal expansion at P = Pfin

R = 8.31 J/mol-K
= 8.31 kPa•L/mol‐K
= 0.082 L-atm/mol-K

1 kPa •L	ൌ	1	J
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Example:  2 mol of He is expanded isothermally at 22oC (295 K)
from 22 L to  to 31.7 L.

25

Alternate Units:
Irreversible isothermal expansion in which the external pressure is
suddenly dropped to the final pressure. 

Calculate w for (a)  a reversible isothermal expansion
(b)  irreversible isothermal expansion at P = Pfin

R = 8.31 J/mol-K
= 0.082 L-atm/mol-K

1 L-atm = 101 J

Get same result using L-atm.

Expansion/compression work is called "pV work”and in this context the 
First Law (differential form) becomes

dU = dq + dw = dq - pdV

Constant Volume:  dV = 0

dU = dqV

so   qV = U = U2 - U1

The heat exchanged with the surroundings by a constant-volume system 
is equal to the change of internal energy of the system.

26

It is VERY useful to have a state function (U) whose change
is equal to the heat.

WORK, HEAT AND THE FIRST LAW
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Expansion/compression work is called "pV work”and in this context the 
First Law becomes

dU = dq + dw = dq - pdV

Constant Pressure

dU = dqp - pdV  

so   dqp = dU + pdV    or   qp= U + p V  U

Bummer!!

27

Unfortunately, the heat exchanged with the system is NOT equal to the
change in the State Function, U.

WORK, HEAT AND THE FIRST LAW

Constant Pressure

dqP = dU + pdV    or   qP = U + p V  U

ENTHALPY

28

It would be convenient to have a State Function, whose change is equal
to the heat under constant pressure conditions.  Let's invent one!!

Enthalpy: Define       H  U + pV

In general:    H = U + pV 

Constant Pressure:    pV = pV  (Not true in general)

H = U + pV = qp

p = Constant:      qp = H    and dqp = dH
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Relating Enthalpy and Internal Energy Changes

Calcium Carbonate (CaCO3) has two crystalline solid state forms,

CaCO3 (calcite)  CaCO3(aragonite)

U for the conversion of one mole of calcite to aragonite is +0.21 kJ

Calculate H for this conversion at 1 bar (1x105 Pa).

Vm(calcite)  = 37 cm3/mol
Vm(aragonite)  = 34 cm3/mol
1 J = 1 Pa-m3

1 cm3 = 10-6 m3

H = U + pV = U + pV = 0.21 kJ - 3.0x10-4 kJ = 0.21 kJ 

Conclusion:  In reactions involving only liquids and solids, the difference
between U and H is negligible

30

Relating Enthalpy and Internal Energy Changes

For the combustion of methane:  CH4(g) + 2 O2(g)  CO2(g) + 2 H2O(l),

H = -890.0 kJ at 25 oC.  Calculate U for this reaction at 25 oC.

U = H - pV =-890.0 kJ - (-5.0 kJ) = -885.0 kJ

One can ignore the volumes of liquids or solids when calculating differences
between U and H for a reaction.
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Heat Capacities

The heat capacity, C, of any system is the amount of heat required
To raise the temperature of the system by 1 K (= 1 oC).

Define:

31

Constant Volume: qV = U      and dqV = dU

Constant Pressure: qp = H      and dqp = dH

Molar Heat Capacities

The heat capacity of a material is an extensive property.

32

Constant Volume:

Constant Pressure:

It is more useful to tabulate Molar Heat Capacities, CV,m and CP,m

CV,m = CV/n  

Cp,m = Cp/n  
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The Relation Between Cp,m and CV,m

p = constantV = constant

qv qp

T
T wby

= qV+wby

Can show
wby = +pV

= +nRT

qp = qV + nR T

qp/ T = qV/ T + nR T/ T

Cp = CV + nR

Cp/n = CV/n + nR/n

Cp,m = CV,m + R

or    Cp,m - CV,m = R

Above relation is valid for
Perfect Gases.

33

34

The Calculation of Heat Capacities of Gases

Statistical Mechanics and the Molecular Kinetic Theory of Gases
can be used to compute the heat capacities of gas phase molecules.

This material is not discussed in any significant detail in the text.
However, don't worry.  It's Easy!!

Equipartition of Energy

Translation:  The Translational Molar Internal Energy is:  
Um(trans) = 1/2 RT per translational degree of freedom.

Rotation:  The Rotational Molar Internal Energy is:  
Um(rot) = 1/2 RT per rotational degree of freedom.

Vibration:  The Vibrational Molar Internal Energy is:  
Um(vib) = 1 RT per vibrational degree of freedom.

Vibrational contributions are twice as high because each vibration
has both kinetic and potential energy.



18

35

Monatomic Gases (e.g.  Ar): 3 translations

Note: Hm = Um + pV = Um + RT

Um = Um(trans) = 3(1/2 RT) = 3/2 RT

Hm = Um + RT = 5/2 RT 

Cp,m(exp) = 20.8 J/mol-K for Ar [and other monatomic gases]     

36

Diatomic Gases (e.g.  O2): 3 translations + 2 rotations + 1 vibration

Um(rigid) = Um(trans) + Um(rot) = 5/2 RT**

Hm(rigid)= Um(rigid)+ RT = 7/2 RT 

Um(trans) = 3(1/2 RT) = 3/2 RT

Um(rot) = 2(1/2 RT) = 1 RT

Um(vib) = 1(1 RT) = 1 RT

At low to moderate temperatures, vibrations do not contribute the
full amount of Internal Energy predicted by Equipartition of Energy.
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Um(vibrating) = Um(trans) + Um(rot) + Um(vib)= 7/2 RT**

Hm(vibrating) = Um(vibrating)+ RT = 9/2 RT 

Diatomic Gases (e.g.  O2): 3 translations + 2 rotations + 1 vibration

Um(trans) = 3(1/2 RT) = 3/2 RT

Um(rot) = 2(1/2 RT) = 1 RT

Um(vib) = 1(1 RT) = 1 RT

38

Diatomic Gases (e.g.  O2): 3 translations + 2 rotations + 1 vibration

Experimental O2(g) heat capacities 

t               Cp,m

25 oC        29.1 J/mol-K 

500 31.1

1000 34.9

1500 36.6

2000 37.8

Very small vibrational contribution

Large vibrational contribution

Small Electronic contribution

Note: Statistical Mechanics formulas can be used to calculate the
vibrational contribution to Cp,m very accurately. 
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Non-Linear Polyatomic Gases (e.g.  NH3): 3 translations + 
3 rotations + 
3N-6 vibrations
(N = No. Atoms)

NH3:  3 translations + 3 rotations + 6 vibrations 

In Class:  Cp,m(rigid) = 4 R = 33.2 J/mol-K

Cp,m(vibrating) = 10 R = 83.1 J/mol-K

Experimental NH3(g) heat capacities 

t               Cp,m

25 oC        35.6 J/mol-K 

1000         63.0

2000         75.2

3000         79.7

Small vibrational contribution

Large vibrational contribution

40

Linear Polyatomic Gases (e.g.  HCCH): 3 translations + 
2 rotations + 
3N-5 vibrations
(N = No. Atoms)

HCCH:  3 translations + 2 rotations + 7 vibrations 

Homework:  Show Cp,m(rigid) = 7/2 R = 29.1 J/mol-K

Show  Cp,m(vibrating) = 21/2 R = 87.3 J/mol-K

Experimental HCCH(g) heat capacities 

t               Cp,m

25 oC        35.6 J/mol-K 

1000         73.2

2000         82.9

Relatively small vibrational contribution

Large vibrational contribution
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The Variation of Internal Energy (U) with Temperature

We recently showed that:  

Therefore, at constant volume, one has:  dU = CVdT = nCV,mdT  

or:

Over small temperature ranges, for which CV,m  Constant, this

expression simplifies to:  U = nCV,m(T2 - T1) = nCV,mT

However, over extended ranges of temperature, and for accurate results,
one must use the temperature dependent heat capacities and integrate
over the temperature range to calculate U upon heating (or cooling)

Note: The above expression is valid only if  V is constant.  If the volume
changes (e.g. at constant pressure), then there is an additional term.
This will be addressed at the end of the chapter.

42

The Variation of Enthalpy (H) with Temperature

We recently showed that:  

Therefore, at constant pressure, one has:  dH = CpdT = nCp,mdT  

or:

Over small temperature ranges, for which Cp,m  Constant, this

expression simplifies to:  H = nCp,m(T2 - T1) = nCp,mT

However, over extended ranges of temperature, and for accurate results,
one must use the temperature dependent heat capacities and integrate
over the temperature range to calculate H upon heating (or cooling)
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One common functional form to characterize temperature dependent heat

capacities is:

a, b and c are empirical constants determined for a given gas by fitting the
equation to experimental data of  Cp,m vs. temperature.

Determine the change in enthalpy upon heating 1 mole of CO2(g) from
100 oC to 400 oC.  

For CO2(g),
a = 44.22 J/mol-K
b = 8.79x10-3 J/mol-K2

c = -8.62x105 J/mol-K3

H = H(673 K) - H(373 K) = +13,620 J
 +13.6 kJ

44

Adiabatic Expansion (and Compression) of a Perfect Gas

Preliminary:  Variation of U with temperature for a Perfect Gas

In principle, changes in the Internal Energy (U) of a substance will occur
with changes in temperature or with changes in volume.

In fact, we will learn in a little while that the "total differential" for an 
infinitesimal change, dU is given by:

It can be proven that for a Perfect Gas, which has no intermolecular
attractions or repulsions, the Internal Energy will be unchanged by 
changes in volume if the temperature is constant; i.e.

for a Perfect Gas
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for a Perfect Gas

Therefore, one has:

independent of whether the volume (pressure) is changing.

Thus, if the gas is changing from T1 to T2, the Internal Energy change is: 

if CV,m = Constant  

46

Adiabatic Expansions (and Compressions) of a Perfect Gas

Adiabatic: There is no heat exchange between system and surroundings;
i.e. q = 0 (or dq = 0)

For isothermal expansions (or compressions) from State 1 to State 2, the

pressure and volume are related by:  p2V2 = p1V1

We shall develop equivalent expressions relating the variables of 
State 1 (p1 ,V1 , T1) and State 2 (p2 ,V2 , T2). 

The First Law (applied to Perfect Gases) may be written:  

dU = dq + dw

nCV,mdT =  dq - pdV 

nCV,mdT =  0 - pdV for an adiabatic process
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nCV,mdT =  0 - pdV for an adiabatic process

separating variables

assuming CV,m = constant 

48

An alternative form relates p2 and V2 to p1 and V1

This can be simplified further.
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This can be simplified further.

  Cp,m /CV,m

Therefore:

This latter formula is often written:

This form is analogous to the isothermal expansion expression:

p2V2 = p1V1

50

or

Consider 80 g of  O2(g) [M=32] originally at 2,000 kPa and 8 L.
This gas is expanded reversibly and adiabatically to a final volume of 16 L 

Calculate q, w and U (in kJ) for this expansion. R = 8.31 kPa-L/mol-K
= 8.31 J/mol-K

Cp,m = (7/2)R T1 = 770 K
T2 = 584 K

q = 0
w = U = -9660 J = -9.7 kJ

If a perfect gas is compressed reversibly and adiabatically, what are the
signs of q, w and U? 

q = 0
w = U > 0
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THERMOCHEMISTRY

Thermochemistry is the quantitative study of the heat produced by a 
given chemical reaction.

Alternatively, if we perform the following reaction in a beaker:

Ba(OH)2·8H2O(s) + 2NH4NO3(s) → Ba(NO3)2(s) + 2NH3 (aq) + 10H2O(l)

We will observe the spontaneous formation of ice on the outside of the vessel 
as the temperature of the system decreases rapidly.

If we perform this reaction:

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

We will note that the vessel gets hot.

51
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A large percentage of reactions are performed at constant pressure,
in which case:  qp = H

Therefore, the terms "Heat of Reaction" and "Enthalpy of Reaction" are often
used interchangeably.

NOTE:
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We don’t (can’t) measure a chemical’s enthalpy.  What we measure is 
the change in enthalpy that occurs during a transformation.

In order to report enthalpy changes, H, for a given transformation it 
is useful to discuss changes between substances in their standard 
states, we then use Ho to represent the standard change in enthalpy.

The standard state of a substance at a specified temperature is its 
pure form at 1 bar.

53

For example, the standard state of

Oxygen at 298.15 K is O2(g) 

Ethanol at 158 K is C2H5OH(s)

Carbon at 298.15 K is C(graphite)  

A  B H1

H2

H = H1 + H2

A+C  B+D

C  D+

or   E  F

after simplification

If a reaction occurs in a series of steps, one adds the H’s 
for the individual steps to obtain the overall H of the reaction.

HESS'S LAW

Hess's Law can be utilized to calculate H for a reaction whose 
enthalpy change has not been measured.

54
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C(s) + ½O2(g)  CO(g) H = ?
cannot be measured

(1)  CO2(g)   C(s) + O2(g) H1 = +393.5 kJ

(2’)  CO2(g)  CO(g) +½O2(g) 

H2 = -566.0 kJ

(1’)  C(s) + O2(g)  CO2(g) H1’ = -1(+393.5 kJ)
= -393.5 kJ

(2)  2CO(g) + O2(g)  2CO2(g)

H2’ = -½(-566.0 kJ)
= +283.0 kJ

C(s) + O2(g) + CO2(g)  CO2(g) + CO(g) +½O2(g) 
Add (1’) + (2’)

C(s) + ½O2(g)  CO(g)

H  H1’ + H2’ = -393.5 + (+283.0) = -110.5 kJ

55

(2’)  CO2(g)  CO(g) +½O2(g) 

(1’)  C(s) + O2(g)  CO2(g) H1’ = -393.5 kJ/mol

H2’ = +283.0 kJ/mol

C(s) + ½O2(g)  CO(g)

or C(s) + O2(g)  CO(g) + ½O2(g) H -110.5 kJ/mol

C + O2

H

CO2

CO + ½O2
H1’

H2’

H

56
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Hess’s Law Example

Determine the enthalpy change for the formation of acetylene,

2C(s) + H2(g)  C2H2(g)      Ho = ???

from the thermochemical equations below.

(1)  C2H2(g) + (5/2)O2(g)  2CO2(g) + H2O(l) H = -1299.6 kJ

(2)  C(s) + O2(g)  CO2(g) H = -393.5 kJ

(3)  2H2(g) + O2(g)  2H2O(l) H = -571.6 kJ

2C(s) + H2(g)  C2H2(g)      Ho = +226.8 kJ

57

ENTHALPIES OF FORMATION

The Enthalpy of Formation (aka Heat of Formation), fHo, of a compound 
is defined as the enthalpy of the reaction creating one mole of the compound
from the elements in their standard states.
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 H2O(l)H2(g) + ½O2(g) fHo = -285.8 kJ/mol

fHo = +33.2 kJ/mol NO2(g)½N2(g) + O2(g)

fHo = -277.7 kJ/mol

2C(gr) + 3H2(g) + ½O2(g)  C2H5OH(l)

fHo = -103.9 kJ/mol C3H8(g)3C(gr) + 4H2(g)

As we shall see, the enthalpy change for a reaction, rHo, can be
calculated if one knows the enthalpies of formation of
all reactants and products.     
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ENTHALPIES OF FORMATION

Taking Hess’s law to its logical conclusion suggests that we may consider a 
reaction as proceeding by first breaking the reactants up into their elements 
and then forming the products from those elements.

E
nt

ha
lp

y,
 H

Elements

Reactants

Products

-f Ho(Rct)
+fHo(Prod)

r Ho
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Note: If a reactant or product is an element in its standard state, its
enthalpy of formation is zero.

E
nt

ha
lp

y,
 H

Elements

Reactants

Products

-f Ho(Rct)
+fHo(Prod)

r Ho

60

Example:   A + 3 B  2 C + D
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Use the data in the table to calculate Ho for the reaction

C6H12O6(s) + 6 O2(g)   6CO2(g) + 6H2O(l) Compound     fHo

C6H12O6 -1268 kJ/mol

CO2 -393.5

H2O               -285.8

62

Homework:  The reaction for the combustion of L-alanine is:

2C3H7O2N(s) + (15/2) O2(g)   6CO2(g) + 7H2O(l) + N2(g)

Ho = -3236 kJ

Compound     fHo

CO2 -393.5

H2O               -285.8

Use the data in the table to calculate the
enthalpy of formation of  L-alanine

Answer:  fHo(C3H7O2N) = -562.8 kJ/mol
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The Temperature Dependence of Reaction Enthalpies

When the enthalpy change of a reaction, rH, is measure using either Hess's
Law or Enthalpies of Formation, the results are generally for the reaction
occurring at Room Temperature (298 K). 

If you need to know rH at some other temperature (at the same pressure), 
it can be calculated using Kirchoff's Law if one knows the heat capacities 
of both reactants and products of the reaction.

Kirchoff's Law

We showed earlier that:

Therefore:

Note:  I will discuss this briefly.  However, you are not responsible for
any calculations.

Slope = Cp

64

If one has a reaction,  R  P, the above equation can be applied to both
reactants and products to get:

where:

Note: If the heat capacities of reactants and products can be taken as 
approximately constant, then Kirchoff's Law simplifies to:
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Consider the combustion of hydrogen:  2 H2(g) + O2(g)   2H2O(l)        

For this reaction at 298 K (=25 oC), the reaction enthalpy is:
rH(298 K) = -571.6 kJ  

Calculate the reaction enthalpy at 373 K (=100 oC). 

Species      Cp,m

H2(g)          33.6 J/mol-K 

O2(g)          29.4

H2O(l)        75.3

rCp = +54.0 J/mol-K

rH(373 K) = -567.6 kJ  

25 oC

100 oC

Notice that the change in rH is pretty small over the 75 oC range
from 25 oC to 100 oC.

As noted above, you are not responsible for this calculation.
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Mathematics and the First Law

In the following section, will we learn:

1. State Functions and Exact Differentials

2. Partial Derivatives and The Total Differential

3. How mathematics can be used to simplify Physical Chemistry
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State Functions and Exact Differentials

A State Function is one whose change is independent of how one proceeds
from an initial state to a final state.

Internal Energy (U) is a State Function.

The differential of a State Function is an Exact Differential

We say that the integral of an exact differential is independent of the path

Note: The cyclic integral of an exact differential is zero

68

Work and Heat are NOT State Functions.

Therefore, their differentials are inexact differentials

i.e. their integrals are dependent on path.

We CANNOT write:

Similarly:

We CANNOT write:
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The Total Differential

Consider a function, z = z(x)

One  Independent Variable

For a finite change, x, one can approximate z as:

For an infinitesimal change,
dx, one can write dz exactly as:

70

Consider a function of two independent variables, z = z(x,y)

Two  Independent Variables

If one changes x, holding y constant, then the change in z is:

If one changes y, holding x constant, then the change in z is:

The total change, dz, is given by the sum of these two changes.
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As an example from thermodynamics, one generally writes that
the internal energy is a function of volume and temperature, U=U(V,T,)

The total differential, dU is written as:

dU due to change in V dU due to change in T

Analogously, if one considers H = H(p,T), the total differential, dH, is:

72

There can be more than two independent variables.

For example:  p = p(n, V, T)

More than Two  Independent Variables
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An Example of the Utility of  the Total Differential

Thermal Expansion Coefficient:

Isothermal Compressibility:

These two coefficients are very useful, and have been tabulated for thousands
of materials.

If one wishes to know the effect of temperature on the pressure exerted by
a substance on a constant volume container, the following coefficient 
would be very valuable.

Then the increase in pressure accompanying a rise in temperature could
be calculated by:

74

Then the increase in pressure accompanying a rise in temperature could
be calculated by:

Unfortunately, one can look high and low and never find an experimental 
measurement of this important quantity.

Fortunately, it is not necessary to measure this quantity directly because it
can be calculated from tabulated values of  and T for a substance.

It can be shown in class that, starting with the total differential for 
V = V(p,T):

where
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The thermal expansion coefficient of liquid mercury is:   = 1.8x10-6 K-1

The isothermal compressibility of liquid mercury is:  T = 4.0x10-7 bar-1

The inside of a glass capillary tube can tolerate a pressure of 10 bar without
exploding.

If a capillary is filled with liquid mercury at 25 oC and 1 bar, what will
be the pressure inside the capillary tube if it is heated to 29 oC;
i.e. will the capillary tube explode?

(p/T)V = 4.5 bar/K

P = 18 bar

Pfin = 1 + 18 = 19 bar   

76

Changes in Internal Energy

However, the assumption that U is independent of volume, (U/V)T = 0,
is not valid for any material other than a Perfect Gas. 

In general, one must consider changes in both V and T when determining
changes in the internal energy, U.

Earlier in the chapter (in section on Adiabatic Expansions) 
we showed that:

for a Perfect Gas

Therefore, one has:

independent of whether the volume (pressure) is changing.
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Starting with:  U = U(V, T)
We can write the total differential:

The Constant Volume Heat Capacity, CV , is:

We can also define the Internal Pressure, T , as:

In general, one must consider changes in both V and T when determining
changes in the Internal Energy, U.

Therefore:

78

If both the volume and temperature change during a process, U can be
calculated from:

For NH3(g) at 298 K and 1 bar, T,m = 0.84 kPa/mol and CV,m = 27.3 J/mol-K     

Calculate the change in Molar Internal Energy, Um , when NH3 is heated from
298 K to 300 KJ and simultaneously compressed from 1.0 L to 0.6 L.

1 kPa-L = 1 J

Note that for a gas at moderate pressure, changes in internal energy resulting
from a change in T are greater than those resulting from a change in V.
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Repulsions Dominant
T < 0 
and for a volume increase:

Attractions Dominant
T > 0 
and for a volume increase:

79

The sign of T is a very useful measure of whether repulsive or attractive
forces are dominating the intermolecular interactions of a system under
a given set of conditions.   

80

Example Calculations

The Internal Pressure, T , can be related to state variables of a material.

We will learn (in Chapter 3), that one can derive:

(A)  Show (in class) that for a Perfect Gas, T = 0

(B)  Show (in class) that for a van der Waals Gas, T = a(n/V)2
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Changes in Internal Energy at constant Pressure

In a constant volume experiment, the rate at which U changes with temperature
is given by:

Divide by dT

Hold V constant

Let's assume, instead, that the temperature is varied in a constant pressure
experiment.

Divide by dT

Hold P constant

We can recast this in terms of the thermal expansion coefficient:

Thus, we have:

82

and

(1)  If attractive forces dominate, T > 0, and U is higher for the same
temperature rise at constant pressure than at constant volume.

(2)  If repulsive forces dominate, T < 0, and U is lower for the same
temperature rise at constant pressure than at constant volume.

(3)  For a Perfect Gas, with no attractive or repulsive forces,
T = 0, and U is the same independent of whether the temperature rise 
is at constant pressure or constant volume.

These trends make sense!!
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Note:  The Joule Experiment

As outlined in the text (Sect. 2.11 B), James Joule thought that he could
determine the Internal Pressure, T , by measuring the temperature change
when a gas expands into a vacuum.

Unfortunately, his measurement apparatus was not sufficiently accurate
to measure this quantity.

However, he later developed another experiment (the Joule-Thomson
Experiment) that can be used to measure deviations of real gases
from ideality (the Joule-Thomson Coefficient) [coming up shortly]

You are not responsible for the Joule Experiment.

84

The Relation Between Cp and CV

Early in the Chapter, we presented the relation:  Cp- CV = nR 

Actually, there is a general relationship which can be derived for
Cp -CV for any material.  For a Perfect Gas, it reduces to the above equation.

The derivation is presented in "Further Information 2.2" in the text, although
it requires a relationship for T which will be derived in Chapter 3.  We will use
the following equation (deferring its derivation until the next chapter).



43

85

The Relation Between Cp and CV

Let's start with the definition:

We show in class that, using the standard relation between H and U, one has:

Using the total differential for U(V,T) to compute (U/T)p , 
we show in class that: 

We then use in class the relation,
to show that:

86

The Relation Between Cp and CV

The above equation is easily usable, as is, to determine Cp - CV ,
if one knows the Equation of State of the substance.

However, it is convenient to recast the equation in terms of the Thermal
Expansion Coefficient, , and Isothermal Compressibility, T . 

usingand

Therefore, we obtain in class:
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where and

Let's apply this equation to a Perfect Gas.

Let's show in class that for a Perfect Gas,

1.   = 1/T

2.  T = 1/p

3.  Cp - CV = nR  and Cp,m - CV,m = R   

As discussed earlier in the chapter, the reason that Cp > CV for a
Perfect Gas is that extra heat is required to replace the energy lost
by the gas in pushing aside the atmosphere. 
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where and

Because the volume of a liquid changes very little with a rise in temperature,
it is tempting to assume that Cp = CV for a liquid (or solid).

Let's apply this formula to H2O(l) at 25 oC. Cp,m = 75.3 J/mol-K

Vm = 0.018 L/mol

 = 2.1x10-4 K-1

T = 4.9x10-5 bar-1

1 L-bar = 100 J      

CV,m = Cp,m -0.5 J/mol-K = 75.3 J/mol-K - 0.5 J/mol-K = 74.8 J/mol-K  

In some liquids, Cp,m and CV,m can differ by as much as 30%. 
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HOMEWORK

In the last section, we proved that an expression for Cp - CV is:

There is an alternative expression for Cp - CV:

Use:  (1)  H = U + pV
(2)  The total differential for H(p,T)
to derive the following equation for Cp - CV: 
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In the last section, we noted that the material in Chapter 3 will permit us
to develop the following expression for (U/V)T:  

The material in Chapter 3 will also permit us to develop the following
expression for (H/p)T:  

It is easy to show that for a gas obeying the Perfect Gas equation, 
(H/p)T = 0, in which case Cp - CV = nR.      

However, for a real gas or a condensed phase material, (H/p)T  0. 
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The Dependence of H (Enthalpy) on p and T

In general, one must consider changes in both p and T when determining
changes in the Enthalpy, H.

Starting with:  H = H(p,T)
We can write the total differential:

The Constant Pressure Heat Capacity, CV , is:

Therefore:

As noted in the last section, (H/p)T = 0 for a Perfect Gas, in which
case the first term vanishes, and H is a function of temperature only.
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Therefore:

As noted in the last section, (H/p)T = 0 for a Perfect Gas, in which
case the first term vanishes, and H is a function of temperature only.

However, in a real gas or condensed phase material, (H/p)T  0, and
the Enthalpy is a function of both pressure and temperature.   

The value of (H/p)T for a non-ideal material can be related to an 
experimental quantity called the Joule-Thomson Coefficient ()

You are NOT responsible for the following material on
the Joule-Thomson Coefficient
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The Joule-Thomson Coefficient

Following the failure of his initial experiment to measure deviations of
gases from ideality, James Joule  teamed with William Thomson (Lord Kelvin)
to devise a rather sophisticated experiment in which a gas is expanded from
high pressure to low pressure through an insulated throttling valve, and the 
change in temperatured is measured. 

It can be proven that this expansion occurs at constant enthalpy (H)
[e.g. Justification 2.3 in the text].

From change in temperature (T) divided by the change in pressure (p),
one obtains a quantity, now termed the Joule-Thomson Coefficient ():

One expects that  = 0 for a Perfect Gas

It can be proven (you are not responsible for the proof) that:
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If Pressure is varied from p1 to p2

and Temperature is varied from T1 to T2: 

Variation in H due to change in Pressure

Variation in H due to change in Temperature

Using and

One can write:

Thus, if one has experimental values for the Joule-Thomson Coefficient
and Constant Pressure Heat Capacity of a substance, then the dependence
of H on pressure and temperature can be determined.
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