THE RATES OF CHEMICAL REACTIONS Chapter 21 Outline

HW: Questions are below. Solutions are in separate file on the course web site.
Sect. Title and Comments Required?

1. Experimental Techniques YES
2. The Rates of Reactions YES
3. Integrated Rate Laws YESNote: You are NOT responsible for equations that are first order inboth [A] and [B] \{Eqns. 21.18 and 21.19 on pg.794)
4. Reactions Approaching Equilibrium NO and YES
NO - We'll just comment on "Reversible" First-Order Reactions. YES - Instead, we'll discuss "Competitive" First-Order Reactions.
5. The Temperature Dependence of Reaction Rates YES
In addition to giving the Arrhenius Theory, we will also present the Transition-State Theory of rate constants, given in Chapter 22 of the text (Sects. 22.4-22.5).
6. Elementary Reactions YES
7. Consecutive Elementary Reactions YES
You do NOT have to memorize the equations for the concentrations of the species.
8. Unimolecular Reactions YES
9. Polymerization Kinetics NO
10. Photochemistry YES

Note: We will also include a section on Enzyme Kinetics in the PowerPoint and supplementary homework.

Chapter 21 Homework Questions

21.1 The rate of formation of C in the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow 2 \mathrm{C}+3 \mathrm{D}$ is $2.7 \mathrm{Ms}^{-1}$. State the reaction rate, and the rates of formation or consumption of A, B, and D.
21.2 The rate law for the reaction, $A+B \rightarrow$ Products, is of the form, $r=k[A]^{x}[B]^{y}$. From the initial rate data for this reaction given below, determine the reaction orders, " x " and " y ", and the rate constant, k (give units).

$\left[\mathbf{A}_{\mathbf{o}}\right]$	$\left[\mathbf{B}_{\mathbf{o}}\right]$	$\mathbf{r}_{\mathbf{o}}$
0.10 M	2.0 M	$8.50 \mathrm{Ms}^{-1}$
0.30	2.0	2.83
0.30	3.0	7.80

21.3 At $518^{\circ} \mathrm{C}$, the half-life for the decomposition of gaseous acetaldehyde (aka ethanal, $\mathrm{CH}_{3} \mathrm{CHO}$) is 410 s when the initial pressure is 363 torr. The half-life is 880 s when the initial pressure is 169 torr. Determine the order of the reaction.
21.4 The reaction, $A \rightarrow P$, is of order " x "; i.e. Rate $=k[A]^{x}$. When $\left[A_{o}\right]=0.4 \mathrm{M}$, the half-life of the reaction is 200 s . When $[\mathrm{A}]_{0}=0.2 \mathrm{M}$, the half-life of the reaction is 50 s . What is the order of this reaction (i.e. what is " x ")?
21.5 The reaction, $A \rightarrow P$, is of order " x "; i.e. Rate $=k[A]^{x}$. When $\left[A_{0}\right]=0.1 \mathrm{M}$, the half-life of the reaction is 200 s . When $[\mathrm{A}]_{0}=0.25 \mathrm{M}$, the half-life of the reaction is 126 s . What is the order of this reaction (i.e. what is " x ")?
21.6 Consider a second order reaction, $\mathrm{A} \rightarrow$ Products. When $[\mathrm{A}]_{\mathrm{o}}=1.30 \mathrm{M}$, the half life of the reaction is 42 seconds.
(a) What is the rate constant, k , for this reaction?
(b) When $[\mathrm{A}]_{\mathrm{o}}=1.30 \mathrm{M}$, what will the concentration be 60 seconds after the start of the the reaction.
(c) When $[\mathrm{A}]_{0}=1.30 \mathrm{M}$, how long will it take for the concentration of A to decrease to 0.80 M?
21.7 Consider a third order reaction, $\mathrm{A} \rightarrow$ Products. When the initial concentration is $[\mathrm{A}]_{0}=0.80 \mathrm{M}$, it takes 6.40 seconds for the concentration to decrease to $[\mathrm{A}]=0.50 \mathrm{M}$.
(a) Calculate the rate constant, k .
(b) When $[\mathrm{A}]_{0}=0.80 \mathrm{M}$, what is the concentration after 20 seconds.
(c) When $[\mathrm{A}]_{0}=0.80 \mathrm{M}$, how long does it take for the concentration to decrease to 0.30 M
21.8 Consider a reaction, $\mathrm{A} \rightarrow$ Products, which is of order 3/2; i.e. Rate $=-\frac{d[A]}{d t}=k[A]^{3 / 2}$. The rate constant for this reaction is $k=0.03 \mathrm{M}^{-1 / 2} \mathrm{~s}^{-1}$.
(a) Determine the half-life for this reaction when $[\mathrm{A}]_{0}=0.50 \mathrm{M}$
(b) If the initial concentration of A is 0.50 M , what will the concentration of A be after 25 s ?
(c) If the initial concentration of A is 0.50 M , how long will it take for the concentration to decrease to 0.20 M ?
21.9 Consider the competitive first-order reactions,
$A \xrightarrow{k_{1}} B$
$A \xrightarrow{k_{2}} C$
(a) If one begins an experiment with $[\mathrm{A}]_{\mathrm{o}}=1.20 \mathrm{M}$, it is found that $[\mathrm{B}]=0.90 \mathrm{M}$ at the conclusion of the experiment.
What is the ratio of the two rate constants, $\mathrm{k}_{1} / \mathrm{k}_{2}$?
(b) It is found that the rate constant for the first reaction is $\mathrm{k}_{1}=0.60 \mathrm{~s}^{-1}$. what is the concentration, $[\mathrm{C}], 2.0$ seconds after the start of the reaction?
21.10 The rate constant for a first order reaction is $1.5 \times 10^{-3} \mathrm{~s}^{-1}$ at $40^{\circ} \mathrm{C}$ and $8.6 \times 10^{-2} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$.
(a) Calculate the Arrhenius parameters, A and E_{a}, for this reaction.
(b) Calculate the rate constant of this reaction at $130{ }^{\circ} \mathrm{C}$.
(c) Calculate the temperature at which the half-life of this reaction is 200 s .
21.11 The Transition State Theory Equation for the rate constant is:
$k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} \mathrm{R}, \mathrm{N}_{\mathrm{A}}$ and h are universal constants:
$\frac{R}{N_{A} h}=\frac{8.31}{\left(6.02 \times 10^{23}\right)\left(6.63 \times 10^{-34}\right)}=2.1 \times 10^{10}$
For a given kinetics experiment, a plot of $\ln (\mathrm{k} / \mathrm{T})$ vs. $1 / \mathrm{T}$ was a straight line with Slope $=-5450 \mathrm{~K}$ and Intercept $=+12.80$

Calculate the reaction's Activation Enthalpy, $\Delta \mathrm{H}^{\ddagger}$ (in $\mathrm{kJ} / \mathrm{mol}$), and the Activation Entropy, $\Delta \mathrm{S}^{\ddagger}$ (in J/mol-K).
21.12 One theory of rate constants for bimolecular gas phase reactions is "Collision Theory". The collision theory form for the rate constant is: $k=C \sqrt{T} e^{-\frac{E_{o}}{R T}}$, where C is a constant, and E_{o} is the threshold energy for reaction.

Develop and expression relating the threshold energy, E_{o}, to the Arrhenius Activation Energy.
21.13 The reaction mechanism for the reaction, $\mathrm{A}_{2}+2 \mathrm{~B} \rightarrow 2 \mathrm{P}$ is:

$$
\begin{array}{ll}
\mathrm{A}_{2} \rightleftharpoons 2 \mathrm{~A} & \text { Rapid Pre-Equilibrium } \\
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P} & \text { Slow RDS (this reaction occurs twice) }
\end{array}
$$

Deduce the rate law for $\mathrm{d}[\mathrm{P}] / \mathrm{dt}$ for this mechanism.
21.14 The reaction, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{P}$ (P is the product) proceeds by the following mechanism.
k_{1}
$\mathrm{A}+\mathrm{B} \underset{\mathrm{k}_{-1}}{\sim} \mathrm{AB}$
$\mathrm{AB}+\mathrm{A} \xrightarrow{\rightarrow} \mathrm{P}$
"AB" is an intermediate present in steady-state concentration. Use the steady-state approximation on $[\mathrm{AB}]$ to develop an expression for the rate of formation of P as a function of [A], [B], $\mathrm{k}_{1}, \mathrm{k}_{-1}$ and k_{2}.

Note: For Photochemistry questions: On an exam, you would be given the following relationship between photon wavelength (λ) and energy (E_{ph}):

$$
\mathrm{E}_{\mathrm{ph}}=\frac{\mathrm{hc}}{\lambda} \quad \mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

21.15 In a photochemical reaction, $\mathrm{A} \rightarrow 2 \mathrm{~B}+\mathrm{C}$, the quantum yield with 500 nm light is 210 mol A reacted $/ \mathrm{mol}$ photon absorbed. After exposure of 300 mmol of A to light, 2.28 mmol of B is formed.

How many photons were absorbed?
21.16 In an experiment to determine the reaction quantum yield of a photochemical reaction, $\mathrm{A} \rightarrow$ Products, the reactant was exposed to 490 nm radiation from a 100 W source for 45 ,inin. The intensity of the transmitted light was 40% of the intensity of the incident light. As a result of the radiation, 0.344 mol of the reactant decomposed.
Determine the quantum yield, Φ_{R}, for this reaction.
21.17 Consider the quenching of an organic fluorophore with a fluorescent lifetime, $\tau_{0}=6.0 \mathrm{~ns}$. A quenching agent with a quenching rate constant, $\mathrm{k}_{\mathrm{Q}}=3.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, is added to the solution.

Predict the quencher concentration, $[\mathrm{Q}]$, required to obtain 60% quenching of the fluorescence.
21.18 In a pulsed laser fluorescence experiment on Napthalene (dissolved in hexane), the fluorescence intensity 35 ns after the experiment begins is 65% of the intensity at the beginning of the experiment.
In a separate experiment, it was determined that the fluorescence rate constant is:
$\mathrm{k}_{\mathrm{F}}=4.8 \times 10^{6} \mathrm{~s}^{-1}$.
Calculate (a) the singlet state lifetime, τ_{0} (in ns), and (b) the fluorescence quantum yield of napthalene.
21.19 The hydrolysis of the substrate, N -glutaryl-L-phenylalanine-p-nitroanilide [GPNA], to pnitroaniline and N -glutaryl-L-phenylanine is catalyzed by α-chymotrypsin. When $[E]_{0}=4.0 \times 10^{-6} \mathrm{M}$, it is found that $\mathrm{v}_{\mathrm{o}}=3.7 \times 10^{-8} \mathrm{M} / \mathrm{s}$ when $[\mathrm{S}]=2.5 \times 10^{-4} \mathrm{M}$ and $\mathrm{v}_{\mathrm{o}}=9.8 \times 10^{-8} \mathrm{M} / \mathrm{s}$ when $[\mathrm{S}]=1.0 \times 10^{-3} \mathrm{M}$.
Determine the slope and intercept of the Lineweaver-Burk plot and, from these, $\mathrm{K}_{\mathrm{M}}, \mathrm{V}_{\mathrm{m}}$, and k_{2} for this reaction.
21.20 Consider an enzyme catalyzed reaction with $[E]_{0}=2 \mathrm{mM}, \mathrm{K}_{\mathrm{M}}=20 \mathrm{mM}$, and $\mathrm{V}_{\mathrm{M}}=80 \mathrm{mM} / \mathrm{s}$
(a) The slope of the Lineweaver-Burk plot is
(A) $0.013 \mathrm{~s} / \mathrm{mM}$
(B) $4 \mathrm{~s}-1$
(C) $6.3 \times 10^{-4} \mathrm{mM} / \mathrm{s}$
(D) 0.25 s
(b) The intercept of the Lineweaver-Burk plot is
(A) $0.013 \mathrm{~s} / \mathrm{mM}$
(B) $4 \mathrm{~s}-1$
(C) $6.3 \times 10^{-4} \mathrm{mM} / \mathrm{s}$
(D) 0.25 s
(c) The "turnover number", k_{2}, is
(A) 10
(B) $0.10 \mathrm{~s}-1$
(C) $40 \mathrm{~s}-1$
(D) 0.025 s

Chapter 21

The Rates of Chemical Reactions

Spontaneous Reactions Don't Always Occur

Consider: $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
At $298 \mathrm{~K}, \Delta \mathrm{G}^{\circ}=-237.1 \mathrm{~kJ} / \mathrm{mol} \longrightarrow \mathrm{K}=4 \times 10^{41}$
Therefore, this reaction proceeds $\sim 100 \%$ to completion.
But, how long does it take? Forever!!!
Without a catalyst, the formation of water from hydrogen and oxygen proceeds infinitesimally slowly.

Thus, we see that thermodynamics tells us only whether a reaction can occur. It cannot tell us whether it will occur, or if it will, how fast is the reaction.

That is the subject of Chemical Kinetics.

The Reaction Rate

Example: Rate $=(0.1 \mathrm{M}-0.0 \mathrm{M}) /(10 \mathrm{~s}-0 \mathrm{~s})=0.01 \mathrm{M} \cdot \mathrm{s}^{-1}$

$$
\text { or: Rate }=-(0.0 \mathrm{M}-0.1 \mathrm{M}) /(10 \mathrm{~s}-0 \mathrm{~s})=0.01 \mathrm{M} \cdot \mathrm{~s}^{-1}
$$

Note: the text uses "v" for velocity of a reaction. In accordance with common notation, we will use "Rate" or " R " to denote the reaction rate.

Rates actually change with time

$$
\begin{gathered}
\mathrm{R} \rightarrow \mathrm{P} \\
\text { Rate }=\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}
\end{gathered}
$$

The derivative, $\mathrm{d}[\mathrm{P}] / \mathrm{dT}$, is the tangent of the curve.

OR

$$
\text { Rate }=-\frac{\mathrm{d}[\mathrm{R}]}{\mathrm{dt}}
$$

One must consider stoichiometry when writing rates using different species.

Consider: $\mathrm{A} \rightarrow \mathrm{B}+2 \mathrm{C}$
$\ln \Delta \mathrm{t}=1 \mathrm{sec}: \Delta[\mathrm{A}]=-0.1 \mathrm{M}$

$$
\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}}=-(-0.1 \mathrm{M} / 1 \mathrm{~s})=0.1 \mathrm{M} \cdot \mathrm{~s}^{-1}
$$

$\Delta[\mathrm{B}]=+0.1 \mathrm{M}$

$$
\text { Rate }=+\frac{\Delta[\mathrm{B}]}{\Delta \mathrm{t}}=+(+0.1 \mathrm{M} / 1 \mathrm{~s})=0.1 \mathrm{M} \cdot \mathrm{~s}^{-1}
$$

$\Delta[\mathrm{C}]=+0.2 \mathrm{M}$

$$
\text { Rate }=+\frac{1}{2} \frac{\Delta[C]}{\Delta t}=0.1 \mathrm{M} \cdot \mathrm{~s}^{-1}
$$

General Rule: Divide by Stoichiometric Coefficients when comparing rates of change of different species.

General Rule: Divide by Stoichiometric Coefficients when comparing rates of change of different species.

Thus, for the reaction: $a A+b B \rightarrow c C+d D$
The rate is: \quad Rate $=-\frac{1}{a} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\frac{1}{\mathrm{~b}} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}=+\frac{1}{\mathrm{c}} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=+\frac{1}{\mathrm{~d}} \frac{\mathrm{~d}[\mathrm{D}]}{\mathrm{dt}}$

Monitoring the Concentration

In order to study the rate of a reaction, one must be able to measure the concentration of one of the reactants or products as a function of time.

There are a number of ways to accomplish this depending upon the nature of the reaction. These methods include:

- Chemical titration: e.g. if Cl^{-}is formed, one may determine the concentration by titration with $\mathrm{AgNO}_{3}(\mathrm{aq})$.
- pH measurement: Good for reactions in which H^{+}or OH^{-}is produced or consumed.
- Pressure: Good if number of gas phase moles changes;
e.g. $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
- Optical Rotation: Good if reactant or product is optically active.
- Spectrophotometry: Useful if reactant or product has characteristic absorption band;
e.g. IR $\mathrm{C}=\mathrm{O}$ absorption in ketone decomposition.

Vis. absorption of Br_{2} in: $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$.

- Gas Chromatography
- NMR Spectra
- Mass Spectrometry

Experimental Methods

The experimental procedures used in the laboratory are dependent upon the time scale of the reaction.

- Hours, days, weeks, etc.

Extract aliquots (~ 10) and analyze.

- ~1/2 Hour

Reaction will continue during analysis of aliquot.
Extract aliquots, quench (cool or dilute) and analyze.

- 1-5 minutes

Insufficient time to extract and quench a suitable number (~10) of samples to analyze.
In situ concentration measurements; e.g. spectroscopy, pH , etc.

- 1 millisecond - 1 minute

If reactants mixed in normal fashion by pouring together, the reaction would be over by the time you finished mixing.

Use rapid mixing, flow methods.

Requires less reactant.

- 1 microsecond - 1 millisecond

No time to mix reactants.
Relaxation Methods: Use a sudden "shock" to perturb a system from equilibrium and measure the relaxation to the new equilibrium concentrations

Temperature Jump (T-Jump)

- Let reactants and products reach reach equilibrium in aqueous solution.
- Add electrolyte [e.g. $\mathrm{NaCl}(\mathrm{aq})]$ and capacitor.
- Discharge capacitor quickly ($\sim 1 \mu \mathrm{~s}$). Temperature "jumps".
- Measure relaxation to new equilibrium.

Analogous Methods: P-Jump, E-Jump

$\mathrm{A} \leftrightarrow \mathrm{B}$
$\Delta \mathrm{H} \neq 0$

- 1 picosecond - 1 microsecond

Flash Photolysis

- Create excited state reactant photochemically with ultrashort laser pulse (< 1 ns).
- Measure decay of reactant or production of product.

Rate Laws: Order of a Reaction

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB} \rightarrow \text { Products } \\
& \text { Rate }=k[A]^{\mathrm{x}}[\mathrm{~B}]^{\mathrm{y}}[\mathrm{C}]^{\mathrm{z}}
\end{aligned}
$$

- $[A],[B],[C]$ can be reactants, products or catalysts
- $\mathrm{x}=$ order of reaction w.r.t. [A]
$y=$ order of reaction w.r.t. [B]
$z=$ order of reaction w.r.t. [C]
$n=x+y+z=$ overall order of reaction
- x, y, z are not necessarily equal to the stoichiometric coefficients
- $\mathrm{x}, \mathrm{y}, \mathrm{z}$ can be: positive integers, negative integers, non-integers
- Not all rate laws are of the form above
e.g. Rate $=k_{1}[A][B] /\left(k_{2}+[B]\right) \quad$ (rate law for Enzyme Cat. Rxns.)
- The rate changes with time because the concentrations change with time

Units of the Rate Constant

$$
\begin{aligned}
& \text { Rate }=k[A]^{\mathrm{x}}[B]^{\mathrm{y}}[\mathrm{C}]^{\mathrm{z}} \\
& \text { or Rate }=k[\text { conc }]^{n} \quad n=x+y+z
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{k}=\frac{1}{[\text { conc }]^{\mathrm{n}-1}} \cdot \frac{1}{\text { time }}=\frac{1}{\mathrm{M}^{\mathrm{n}-1}} \cdot \frac{1}{\mathrm{~s}} \quad \begin{array}{l}
\text { If } \quad[\text { conc] }=\mathrm{M} \\
\text { and time }=\mathrm{s}
\end{array} \\
& \mathrm{n}=1 \longrightarrow \mathrm{k}=1 /\left(\mathrm{M}^{1-1} \bullet \mathrm{~s}\right)=\mathrm{s}^{-1} \\
& \mathrm{n}=2 \longrightarrow \mathrm{k}=1 /\left(\mathrm{M}^{2-1} \cdot \mathrm{~s}\right)=\mathrm{M}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{n}=5 / 2 \longrightarrow \mathrm{k}=1 /\left(\mathrm{M}^{5 / 2-1} \cdot \mathrm{~s}\right)=\mathrm{M}^{-3 / 2} \mathrm{~s}^{-1}
\end{aligned}
$$

Determination of Reaction Order

The Initial Rate Method

$$
\begin{gathered}
A \rightarrow \text { Products } \\
R=-\frac{d[A]}{d t}=k[A]^{n}
\end{gathered}
$$

The rate changes with time because [A] changes with time.

It is often convenient to measure the initial rate $\left[\mathrm{R}_{\mathrm{o}}\right]$ for only a small amount of time after the reaction begins.

$$
R_{o}=k[A]_{0}{ }^{n}
$$

time

Principle of the Method

Experiment 1: $\quad\left(\mathrm{R}_{0}\right)_{1}=\mathrm{k}\left([\mathrm{A}]_{0}{ }^{\mathrm{n}}\right)_{1}$
Experiment 2: $\quad\left(\mathrm{R}_{\mathrm{o}}\right)_{2}=\mathrm{k}\left([\mathrm{A}]_{0}{ }^{\mathrm{n}}\right)_{2}$

$$
\frac{\left(R_{0}\right)_{2}}{\left(R_{o}\right)_{1}}=\frac{k\left([\mathrm{~A}]_{0}\right)_{2}^{n}}{\mathrm{k}\left([\mathrm{~A}]_{o}\right)_{1}^{n}}=\left\{\frac{\left([\mathrm{A}]_{o}\right)_{2}}{\left([\mathrm{~A}]_{o}\right)_{1}}\right\}^{n}
$$

When $[A]_{0}$ is doubled, R_{0} is doubled.

$$
\begin{gathered}
\frac{2\left(\mathrm{R}_{\mathrm{o}}\right)_{1}}{\left(\mathrm{R}_{\mathrm{o}}\right)_{1}}=\left\{\frac{2\left([\mathrm{~A}]_{0}\right)_{1}}{\left([\mathrm{~A}]_{0}\right)_{1}}\right\}^{\mathrm{n}} \\
2=2^{\mathrm{n}} \\
\mathrm{n}=1
\end{gathered}
$$

When $[A]_{0}$ is doubled, R_{0} is quadrupled.

$$
\begin{gathered}
\frac{4\left(\mathrm{R}_{\mathrm{o}}\right)_{1}}{\left(\mathrm{R}_{\mathrm{o}}\right)_{1}}=\left\{\frac{2\left([\mathrm{~A}]_{0}\right)_{1}}{\left([\mathrm{~A}]_{\mathrm{o}}\right)_{1}}\right\}^{\mathrm{n}} \\
4=2^{\mathrm{n}} \\
\mathrm{n}=2
\end{gathered}
$$

$$
\begin{gathered}
\text { When }\left([\mathrm{A}]_{0}\right)_{1}=0.5 \mathrm{M}, \quad\left(\mathrm{R}_{\mathrm{o}}\right)_{1}=0.10 \mathrm{Ms}^{-1} \\
\text { When }\left([\mathrm{A}]_{\mathrm{o}}\right)_{2}=1.25 \mathrm{M},\left(\mathrm{R}_{\mathrm{o}}\right)_{2}=1.56 \mathrm{Ms}^{-1} \\
\frac{\left(\mathrm{R}_{\mathrm{o}}\right)_{2}}{\left(\mathrm{R}_{\mathrm{o}}\right)_{1}}=\left\{\frac{\left([\mathrm{A}]_{\mathrm{o}}\right)_{2}}{\left([\mathrm{~A}]_{0}\right)_{1}}\right\}^{\mathrm{n}} \\
\frac{1.56 \mathrm{Ms}^{-1}}{0.10 \mathrm{Ms}^{-1}}=\left\{\frac{1.25 \mathrm{M}}{0.5 \mathrm{M}}\right\}^{\mathrm{n}} \longrightarrow 15.6=(2.5)^{\mathrm{n}}
\end{gathered}
$$

Method of Logarithms

$$
\begin{gathered}
\ln (15.6)=\ln (2.5)^{n}=n \cdot \ln (2.5) \quad\left[\ln (a)^{b}=b \cdot \ln (a)\right] \\
n=\ln (15.6) / \ln (2.5)=2.75 / 0.92=2.99 \\
n=3
\end{gathered}
$$

Note: Can use either natural or common logs.

Generalization to Multiple Concentrations

$$
\begin{gathered}
A+B \rightarrow C \\
R_{0}=k[A]_{0}^{x}[B]_{0}^{y}[C]_{0}^{z} \\
\frac{\left(\mathrm{R}_{0}\right)_{2}}{\left(\mathrm{R}_{0}\right)_{1}}=\frac{\mathrm{k}\left([\mathrm{~A}]_{0}^{\mathrm{x}}\right)_{2}\left([\mathrm{~B}]_{0}^{\mathrm{y}}\right)_{2}\left([\mathrm{C}]_{0}^{\mathrm{z}}\right)_{2}}{\mathrm{k}\left([\mathrm{~A}]_{0}^{\mathrm{x}}\right)_{1}\left([\mathrm{~B}]_{0}^{\mathrm{y}}\right)_{1}\left([\mathrm{C}]_{0}^{]_{0}\right)_{1}}\right.} \\
=\left\{\frac{\left([\mathrm{A}]_{0}\right)_{2}}{\left([\mathrm{~A}]_{0}\right)_{1}}\right\}^{x}\left\{\frac{\left([\mathrm{~B}]_{0}\right)_{2}}{\left([\mathrm{~B}]_{0}\right)_{1}}\right\}^{y}\left\{\frac{\left([\mathrm{C}]_{0}\right)_{2}}{\left([\mathrm{C}]_{0}\right)_{1}}\right\}^{z}
\end{gathered}
$$

Can isolate a given species by holding other concentrations constant．
e．g．Double $[A]_{o}$ while holding $[B]_{\circ}$ and $[C]_{0}$ constant．

Example：Consider the reaction， $2 \mathrm{~A}+\mathrm{B} \rightarrow 2 \mathrm{C}$

$$
\mathrm{R}_{\mathrm{o}}=\mathrm{k}[\mathrm{~A}]_{0}^{\mathrm{x}}[\mathrm{~B}]_{0}^{\mathrm{y}}[\mathrm{C}]_{0}^{\mathrm{z}}
$$

Use the experimental data below to determine x, y, z and the rate constant，k ．

Expt．	［A］。	［B］${ }_{\text {。 }}$	［C］。	R
\＃1	0.50 M	0.10 M	0.80 M	$78 \mathrm{Ms}^{-1}$
\＃2	0.75	0.05	0.20	176
\＃3	0.75	0.10	0.80	176
\＃4	0.75	0.05	0.80	352
$\begin{aligned} & x= \\ & y= \\ & z= \end{aligned}$	$\begin{aligned} & 2 \\ & -1 \\ & 1 / 2 \end{aligned}$		$\mathrm{k} \frac{[\mathrm{~A}]_{0}^{2}[\mathrm{C}]}{[\mathrm{B}]_{0}}$	

Determination of Reaction Order

Use of the Integrated Rate Equation

$$
\mathrm{A} \rightarrow \text { Products } \quad \text { and } \quad \mathrm{R}=-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]^{n}
$$

One may integrate the rate equation to obtain [A] as a function of $k,[A]_{0}$ and t.

$$
\mathrm{A}=\mathrm{A}\left([\mathrm{~A}]_{0}, \mathrm{k}, \mathrm{t}\right)
$$

The form of the function depends upon the order of the reaction, n.

The order, n , and the rate constant, k , can be calculated by determining which order equation fits the experimental data.

First Order Reactions

$\mathrm{A} \rightarrow$ Products

$$
\begin{aligned}
& \mathrm{R}=-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]^{1} \\
& \frac{[A]}{[A]_{0}}=e^{-k t} \\
& \frac{1}{[A]} d[A]=-k d t \\
& {[A]=[A]_{0} e^{-k t}} \\
& \int_{[A]_{0}}^{[A]} \frac{1}{[A]} \mathrm{d}[A]=\int_{0}^{t}-k d t \\
& \ln \left(\frac{[A]}{[A]_{0}}\right)=-k t \\
& e^{\ln \left(\frac{[A]}{[A]_{0}}\right)}=e^{-k t}
\end{aligned}
$$

A Linear Equation

It is not straightforward to use plots of $[A]$ vs. t to determine k.
It would be better to have a linear relation.

$$
\mathrm{A} \rightarrow \text { Products }
$$

The following data were obtained:

	$[A]$	$\ln ([A])$
$5 \min$	0.72 M	-0.33
15	0.63	-0.47
25	0.55	-0.60
35	0.48	-0.73
45	0.42	-0.87

Is this reaction first order?

Yes! Because $\ln ([A])$ vs. t is a straight line.
What is k ?
Slope $=\frac{-0.80-(-0.40)}{(40-10) \min }=-0.0133 \mathrm{~min}^{-1}=-k \quad k=0.0133 \mathrm{~min}^{-1}$

Half-Life of a First Order Reaction

The Half-Life $\left(t_{1 / 2}\right)$ of a reaction (any order) is defined by:

$$
\mathrm{t}=\mathrm{t}_{1 / 2} \text { when }[\mathrm{A}]=1 / 2[\mathrm{~A}]_{0}
$$

For a first order reaction: $\ln \left(\frac{[A]}{[A]_{0}}\right)=-k t$

$$
\begin{aligned}
& \ln \left(\frac{1 / 2[A]_{0}}{[A]_{0}}\right)=-k t_{1 / 2} \\
& \ln \left(\frac{1}{2}\right)=-k t_{1 / 2} \\
& -0.693=-k t_{1 / 2} \\
& \begin{array}{ll}
t_{1 / 2}=\frac{0.693}{k} & \begin{array}{l}
\text { Notes: } \\
\text { (a) } t_{1 / 2} \propto 1 / k \\
\text { (b) } t_{1 / 2} \text { is independent } \\
\text { of }[A]_{0}
\end{array}
\end{array}
\end{aligned}
$$

$[A]_{0} \quad t_{1 / 2}$
1.0 M
$10-0=10 \mathrm{~s}$
$0.5 \quad 20-10=10 \mathrm{~s}$
0.25
$30-20=10 \mathrm{~s}$

Note that $t_{1 / 2}$ is independent of $[A]_{0}$
$k=0.693 / t_{1 / 2}$

$=0.693 / 10 \mathrm{~s}$
$=0.0693 \mathrm{~s}^{-1}$

Example: For a first order reaction, $\mathrm{A} \rightarrow$ Products, the half-life is 150 s .
(a) What is the rate constant, k ?

$$
\mathrm{k}=4.62 \times 10^{-3} \mathrm{~s}^{-1}
$$

(b) If $[A]_{0}=0.40 \mathrm{M}$, what is $[A]$ after 240 s ?
$[\mathrm{A}]=0.13 \mathrm{M}$
(c) If $[A]_{0}=0.40 \mathrm{M}$, how long does it take for [A] to decrease to 0.08 M ?
$\mathrm{t}=350 \mathrm{~s}$

Second Order Reactions

\[

\]

$[A]=\frac{1}{\frac{1}{[A]_{0}}+k t}$

At $t=0,[A]=[A]_{\circ}$
As $t \rightarrow \infty,[A] \rightarrow 0$

It is not straightforward to use the above curve to determine the rate constant, k.

It would be better to have a linear relation.

A Linear Equation

We ALREADY have a linear relation!!!

This is the step just before solving for [A].

If you believe a reaction may be second order, plot $1 /[\mathrm{A}]$ vs. t.

If the plot is a straight line, you have verified the order. The rate constant can be obtained from the slope.

Half-Life of a Second Order Reaction

As before, the Half-Life $\left(t_{1 / 2}\right)$ of a reaction (any order) is defined by:

$$
t=t_{1 / 2} \text { when }[A]=1 / 2[A]_{0}
$$

For a second order reaction: $\frac{1}{[A]}-\frac{1}{[A]_{0}}=k t$

$$
\frac{1}{1 / 2 \cdot[A]_{0}}-\frac{1}{[A]_{0}}=k t_{1 / 2}
$$

$$
\frac{2}{[\mathrm{~A}]_{0}}-\frac{1}{[\mathrm{~A}]_{0}}=k t_{1 / 2}
$$

Notes: (a) $t_{1 / 2} \propto 1 / k$

$$
\frac{1}{[\mathrm{~A}]_{0}}=\mathrm{kt}_{1 / 2}
$$

(b) $t_{1 / 2} \propto 1 /[A]_{0}$

Not Independent of $[A]$ 。

$$
\mathrm{t}_{1 / 2}=\frac{1}{\mathrm{k}[\mathrm{~A}]_{0}}
$$

$[A]_{0} \quad t_{1 / 2}$
$1.0 \mathrm{M} \quad 10-0=10 \mathrm{~s}$
$0.5 \quad 30-10=20 \mathrm{~s}$
$0.25 \quad 70-30=40 \mathrm{~s}$

Note that $t_{1 / 2} \propto 1 /[A]_{0}$

$$
\begin{aligned}
k & =1 / t_{1 / 2} \cdot[A]_{o}=1 /(10 \mathrm{~s} \cdot 1 \mathrm{M})=0.1 \mathrm{M}^{-1} \mathrm{~s}^{-1} \\
\text { or } k & =1 / t_{1 / 2} \cdot[\mathrm{~A}]_{\mathrm{o}}=1 /(20 \mathrm{~s} \cdot 0.5 \mathrm{M})=0.1 \mathrm{M}-1 \mathrm{~s}-1 \\
\text { or } k & =1 / t_{1 / 2} \cdot[\mathrm{~A}]_{\mathrm{o}}=1 /(40 \mathrm{~s} \cdot 0.25 \mathrm{M})=0.1 \mathrm{M}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

Third Order Reactions

A \rightarrow Products
$R=-\frac{d[A]}{d t}=k[A]^{3}$
What should we plot to get a straight line?

$$
t_{1 / 2}=\frac{3}{2 k[A]_{0}^{2}} \text { Notes: (a) } t_{1 / 2} \propto 1 / k
$$

(b) $t_{1 / 2} \propto 1 /[A]_{0}^{2}$

Not Independent of $[A]$ 。

Example: The reaction, $\mathrm{A} \rightarrow$ Products, is third order;
i.e. $-d[A] / d t=k[A]^{3}$
(a) When $[A]_{o}=0.40 \mathrm{M}$, it takes 75 s for the concentration to decrease to 0.10 M .

What is the rate constant, k ?
$k=0.625 \mathrm{M}^{-2} \mathrm{~s}^{-1}$
(b) When $[A]_{0}=0.40 \mathrm{M}$, what is the concentration of A after 315 s ?
$[\mathrm{A}]=0.05 \mathrm{M}$

Zeroth Order Reactions

A \rightarrow Products

$$
\begin{aligned}
& R=-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}[A]^{0} \quad \begin{array}{l}
\text { What??? } \\
\mathrm{How} \text { can the rate of a reaction be independent } \\
\text { of the concentration of reactant?? }
\end{array} \\
& \mathrm{R}=-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k} \quad \begin{array}{l}
\text { Photochemical Reactions } \\
\text { Rate limited by photon flux }
\end{array} \\
& \begin{array}{l}
\text { Surface Catalyzed Reactions } \\
\text { Rate limited by number of active sites on surface }
\end{array} \\
& \begin{array}{l}
\text { Enzyme Catalyzed Reactions } \\
\text { At high substrate concentration, rate limited } \\
\text { by enzyme concentration }
\end{array}
\end{aligned}
$$

A \rightarrow Products

$R=-\frac{d[A]}{d t}=k[A]^{0}=k$
What should we plot to get a straight line?

$t_{1 / 2}=\frac{[A]_{0}}{2 k} \quad$ Notes: (a) $t_{1 / 2} \propto 1 / k$
(b) $t_{1 / 2} \propto[A]_{0}$

Not Independent of $[\mathrm{A}]$ 。

Generalization: Linear Plots

$[A]\left(=1 /[A]^{0-1}\right)$ vs. t

$1 /[A]\left(=1 /[A]^{2-1}\right)$ vs. t

The Trend in Plots

 yields a straight line.For example, if you believe that the reaction order might be $\mathrm{n}=3 / 2$, then plot:

$$
\frac{1}{[A]^{3 / 2-1}}=\frac{1}{[A]^{1 / 2}} \text { vs.t }
$$

A straight line would verify the assumed reaction order.

Generalization: Half-Lives

$n=0 \quad t_{1 / 2}=\frac{[A]_{0}}{2 k} \quad n=1 \quad t_{1 / 2}=\frac{0.693}{k}$
$=\frac{1}{2 k} \cdot \frac{1}{[A]_{0}^{0-1}}$
$=\frac{0.693}{k} \cdot \frac{1}{[\mathrm{~A}]_{0}^{1-1}}$
$\mathrm{n}=2 \quad \mathrm{t}_{1 / 2}=\frac{1}{\mathrm{k}[\mathrm{A}] \text { 。 }}$
$\mathrm{n}=3 \quad \mathrm{t}_{1 / 2}=\frac{3}{2 \mathrm{k}[\mathrm{A}]_{0}^{2}}$
$=\frac{1}{k} \cdot \frac{1}{[A]_{0}^{2-1}} \quad \mathrm{t}_{1 / 2}=\frac{3}{2 k} \cdot \frac{1}{[A]_{0}^{3-1}}$
Trend: For all orders (including $n=1$), $\quad t_{1 / 2} \propto \frac{1}{[A]_{0}^{n-1}}$

$$
\mathrm{A} \rightarrow \text { Products } \quad-\mathrm{d}[\mathrm{~A}] / \mathrm{dt}=\mathrm{k}[\mathrm{~A}]^{\mathrm{n}}
$$

\mathbf{t}	$[A]$	$\mathbf{1} /[\mathrm{A}]$
10 s	0.239 M	$4.18 \mathrm{M}^{-1}$
30	0.153	6.54
50	0.122	8.20
70	0.104	9.62
90	0.092	10.87

Is this reaction second order?
Close, but no cigar!!

$$
A \rightarrow \text { Products } \quad-d[A] / d t=k[A]^{n}
$$

\mathbf{t}	$[\mathbf{A}]$	$\mathbf{1} /[\mathbf{A}]^{2}$
10 s	0.239 M	$17.5 \mathrm{M}^{-2}$
30	0.153	42.5
50	0.122	67.5
70	0.104	92.5
90	0.092	118

Is this reaction third order?
Yes!!!
What is k ?

$$
\frac{1}{[A]^{2}}=\frac{1}{[A]_{0}^{2}}+2 k t
$$

$$
\text { Slope }=\frac{(130-30) \mathrm{M}^{-2}}{(100-20) \mathrm{s}}=1.25 \mathrm{M}^{-2} \mathrm{~s}^{-1}=2 \mathrm{k}
$$

$$
\mathrm{k}=0.625 \mathrm{M}^{-2} \mathrm{~s}^{-1}
$$

Direct Determination of Reaction Order: Half-Life Method

In contrast to "trial and error", there are a number of direct methods to determine the order of a reaction.

One of these is the "Half-Life Method".
One can determine the reaction order by learning how the half-life depends upon the initial concentration, $[A]_{0}$

$$
t_{1 / 2} \propto \frac{1}{[A]_{0}^{n-1}}
$$

When $[A]_{0}=0.2 \mathrm{M}, \mathrm{t}_{1 / 2}=60 \mathrm{~s}$.
When $[A]_{0}=0.4 \mathrm{M}, \mathrm{t}_{1 / 2}=15 \mathrm{~s}$. What is the order, n ?
Note that when $[A]_{0}$ is doubled, $\mathrm{t}_{1 / 2}$ is reduced by a factor of four.
Therefore,

$$
t_{1 / 2} \propto \frac{1}{[A]_{0}^{2}}
$$

Hence, $2=n-1$

$$
n=3
$$

The proportionality between $[\mathrm{A}]_{o}$ and $\mathrm{t}_{1 / 2}$ is not always obvious from inspection.
One may use a mathematical method to determine n from the data.

Mathematical Procedure to Determine \mathbf{n}

$$
\begin{gathered}
\left(t_{1 / 2}\right)_{1} \propto \frac{1}{\left([A]_{0}^{n-1}\right)_{1}} \quad \text { and } \quad\left(t_{1 / 2}\right)_{2} \propto \frac{1}{\left([A]_{0}^{n-1}\right)_{2}} \\
\frac{\left(t_{1 / 2}\right)_{2}}{\left(t_{1 / 2}\right)_{1}}=\frac{1 /\left([\mathrm{A}]_{0}^{n-1}\right)_{2}}{1 /\left([\mathrm{A}]_{0}^{n-1}\right)_{1}} \\
\frac{\left(t_{1 / 2}\right)_{2}}{\left(t_{1 / 2}\right)_{1}}=\left(\frac{\left([\mathrm{A}]_{0}\right)_{1}}{\left([\mathrm{~A}]_{0}\right)_{2}}\right)^{n-1}
\end{gathered}
$$

When $[\mathrm{A}]_{\mathrm{o}}=0.2 \mathrm{M}, \mathrm{t}_{1 / 2}=60 \mathrm{~s}$.
When $[A]_{0}=0.4 \mathrm{M}, \mathrm{t}_{1 / 2}=15 \mathrm{~s}$. What is the order, n ?

$$
\frac{15 \mathrm{~s}}{60 \mathrm{~s}}=\left(\frac{0.2 \mathrm{M}}{0.4 \mathrm{M}}\right)^{\mathrm{n}-1}
$$

$$
\begin{gathered}
0.25=(0.50)^{n-1} \\
\ln (0.25)=\ln (0.50)^{n-1}=(n-1) \cdot \ln (0.50) \\
n-1=\ln (0.25) / \ln (0.50)=(-1.39) /(-0.69)=2.0
\end{gathered}
$$

$$
n=3
$$

Reactions Approaching Equilibrium (Reversible First-Order Reactions

We'll just discuss this material briefly. You are not responsible for it.
Reversible reactions (first order and more complex reactions) are very important, and can be well studied by relaxation methods (introduced earlier).
Consider the reversible reaction, $A \rightleftharpoons B$, in the case that the rates of the forward and reverse reactions are both first order:

$$
\begin{array}{ll}
A \rightarrow B & R_{F}=-d[A] / d t=k_{f}[A] \\
B \rightarrow A & R_{R}=-d[B] / d t=+d[A] / d t=k_{R}[B]
\end{array}
$$

With a bit of algebra, it can be shown that:

$$
\begin{array}{ll}
\Delta[A]=\Delta[A]_{o} e^{-\left(k_{F}+k_{B}\right) t} & \text { where } \\
& \Delta[A]=[A]-[A]_{e q} \\
& \Delta[A]_{o}=[A]_{o}-[A]_{e q}
\end{array}
$$

Thus, the deviation of $[A]$ from its equilibrium value decreases exponentially with a rate constant equal to the sum of the forward and reverse first-order rate constants.

$$
\begin{array}{ll}
\Delta[A]=\Delta[A]_{o} e^{-\left(k_{F}+k_{B}\right) t} & \text { where } \\
& \Delta[A]=[A]-[A]_{e q} \\
& \Delta[A]_{o}=[A]_{o}-[A]_{e q}
\end{array}
$$

Thus, the deviation of $[A]$ from its equilibrium value decreases exponentially with a rate constant equal to the sum of the forward and reverse first-order rate constants.

Therefore, measurement of $\Delta[A]$ as a function of time (from a relaxation experiment) allows one to determine the sum of the two rate constants, $\mathrm{k}_{\mathrm{F}}+\mathrm{k}_{\mathrm{B}}$.

The ratio of the two constants, $\mathrm{k}_{\mathrm{F}} / \mathrm{k}_{\mathrm{B}}$, can be determined from the equilibrium concentrations:

$$
K=\frac{[B]_{e q}}{[A]_{e q}}=\frac{k_{F}}{k_{B}}
$$

Thus, measurement of the decay kinetics, and the equilibrium concentrations at infinite time permit determine of both the forward and reverse rate constants for the reversible reaction.

Competitive First Order Reactions

When a synthetic chemist performs a reaction, (s)he will often obtain more than one product (e.g. lovely white crystals + ugly black gunk).

This is an example of multiple reaction pathways for the given reactant. This can be studied using a "Competitive" first order reaction mechanism.

Consider the two first order reactions:

$$
\begin{array}{ll}
A \xrightarrow{k_{1}} \mathrm{~B} & \text { (Product \#1) } \\
\mathrm{A} \xrightarrow{\mathrm{k}_{2}} \mathrm{C} & \text { (Product \#2) }
\end{array}
$$

Below, we will develop expressions for [A], [B] and [C]
as a function of time.
$A \xrightarrow{k_{1}} B$
$\mathrm{A} \xrightarrow{\mathrm{k}_{2}} C$
[A] vs. time
Both reactions cause $[A]$ to decrease with time.
$\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{2}[\mathrm{~A}]=-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)[\mathrm{A}]=-\mathrm{k}^{\prime}[\mathrm{A}]$
This is a simple first-order rate law, with the effective rate constant, $k^{\prime}=k_{1}+k_{2}$

It may be integrated directly to obtain the following equation for [A].
$[A]=[A]_{o} e^{-\left(k_{1}+k_{2}\right) t}=[A]_{o} e^{-k^{\prime} t}$
Notice that the rate constant for the disappearance of $[A]$ is the sum of the rate constants for the two competing reactions.

$$
\begin{aligned}
& \mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{~B} \\
& \mathrm{~A} \xrightarrow{\mathrm{k}_{2}} \mathrm{C}
\end{aligned}
$$

[B] vs. time
$[\mathrm{B}]$ is formed only from the first of the two rate equations.

$$
\frac{d[B]}{d t}=+k_{1}[A]
$$

To integrate this equation, we insert the above expression for [A].
$\frac{d[B]}{d t}=+k_{1}[A]_{o} e^{-\left(k_{1}+k_{2}\right) t}=+k_{1}[A]_{o} e^{-k^{\prime} t}$

$$
\frac{d[B]}{d t}=+k_{1}[A]_{o} e^{-\left(k_{1}+k_{2}\right) t}=+k_{1}[A]_{o} e^{-k^{\prime} t}
$$

With the initial condition, $[B]_{\mathrm{o}}=0$, we can integrate (in class) to get the following equation for $[B]$ vs. time.
$[B]=\frac{k_{1}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)=\frac{k_{1}}{k^{\prime}}[A]_{o}\left(1-e^{-k^{\prime} t}\right)$
[C] vs. time
Using the identical procedure for [C], we have:
$\frac{d[C]}{d t}=+k_{2}[A]$
This yields: $\quad[C]=\frac{k_{2}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)=\frac{k_{2}}{k^{\prime}}[A]_{o}\left(1-e^{-k^{\prime} t}\right)$
$[A]=[A]_{o} e^{-\left(k_{1}+k_{2}\right) t}$
$[B]=\frac{k_{1}}{k_{1}+k_{2}}[A]_{0}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)$
$[C]=\frac{k_{2}}{k_{1}+k_{2}}[A]_{0}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)$

As one would expect, $[\mathrm{A}]$ decreases exponentially with a rate constant equal to the sum, $\mathrm{k}_{1}+\mathrm{k}_{2}$

Perhaps surprisingly, $[B]$ and $[C]$ both increase exponentially, with rate constants equal to the sum, $\mathrm{k}_{1}+\mathrm{k}_{2}$

However, the relative amounts of the two products depend upon their respective rate constants.
$[A]=[A]_{o} e^{-\left(k_{1}+k_{2}\right) t}$
$[B]=\frac{k_{1}}{k_{1}+k_{2}}[A]_{0}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)$
$[C]=\frac{k_{2}}{k_{1}+k_{2}}[A]_{0}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)$

Let's consider the relative concentrations of the two products,
[B]/[C].
$\frac{[B]}{[C]}=\frac{\frac{k_{1}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)}{\frac{k_{2}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)}=\frac{k_{1}}{k_{2}}$
$\frac{[B]}{[C]}=\frac{\frac{k_{1}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)}{\frac{k_{2}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)}=\frac{k_{1}}{k_{2}}$
Thus, we see that the relative yields of two different products in a reaction is a measure of their relative rate constants.

Consider a reactant, [A] which undergoes two first-order reactions to form the products, $[B]$ and $[C]$
(A) If one begins with an initial concentration of the reactant, 0.90 M . At the conclusion of the experiment, the concentration of C was 0.55 M . What is the value of the ratio, $\mathrm{k}_{1} / \mathrm{k}_{2}$?
$k_{1} / k_{2}=0.64$
$\frac{[B]}{[C]}=\frac{\frac{k_{1}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)}{\frac{k_{2}}{k_{1}+k_{2}}[A]_{o}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)}=\frac{k_{1}}{k_{2}}$
Thus, we see that the relative yields of two different products in a reaction is a measure of their relative rate constants.

Consider a reactant, [A] which undergoes two first-order reactions to form the products, $[B]$ and $[C]$
(B) The rate constant, k_{1}, for the first reaction was found to be $\mathrm{k}_{1}=0.050 \mathrm{~s}^{-1}$. If one begins with an initial concentration of the reactant of 0.90 M , what will be the concentration of [C] 10 s after the start of the reaction?
$[C]=0.40 \mathrm{M}$

Temperature Dependence of the Rate Constant

It is observed for most reactions that the rate constant, k, increases exponentially with rising temperature.

Reaction Coordinate

In order for molecules to react, they must overcome an energy barrier, called the Activation Energy (E_{a}).

At low temperature, only a small fraction of collisions have $E \geq E_{a}$

At high temperature, a larger fraction of collisions have $E \geq E_{a}$

The Arrhenius Equation

Svante Arrhenius (1889)

$$
k=A e^{-\frac{E_{a}}{R T}}
$$

Matches observed k vs. T
A = Pre-Exponential Factor
Units: Same as k
$\mathrm{E}_{\mathrm{a}}=$ Activation Energy
Units: kJ/mol
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$\mathrm{T}=$ Temperature (K)

Prods
Reaction Coordinate

Relation Between E_{a} and Temperature Dependence of k

$$
\begin{aligned}
& k=A e^{-\frac{E_{a}}{R T}} \\
& \ln (k)=\ln (A)-\frac{E_{a}}{R T} \\
& \frac{d \ln (k)}{d T}=+\frac{E_{a}}{R T^{2}}
\end{aligned}
$$

This equation predicts that a plot of $\ln (\mathrm{k})$ vs. T will NOT be a straight line. Rather the slope will become smaller at higher temperatures.

We will use the above expression for $\mathrm{d} \ln (\mathrm{k}) / \mathrm{dT}$ in a later section. However, for now let's determine how to obtain a straight line plot
$\frac{d \ln (k)}{d T}=+\frac{E_{a}}{R T^{2}}=\frac{d \ln (k)}{d(1 / T} \cdot \frac{d(1 / T)}{d T}=-\frac{1}{T^{2}} \cdot \frac{d \ln (k)}{d(1 / T}$
Therefore: $\frac{d \ln (k)}{d(1 / T}=-\frac{E_{a}}{R}$
Thus, we expect that if $\ln (k)$ is plotted vs. $1 / T$, we should get a straight line with Slope $=-E_{a} / R$

Determination of the Arrhenius Parameters

$$
\begin{gathered}
k=A e^{-\frac{E_{a}}{R T}} \\
\ln (k)=\ln \left(A e^{-\frac{E_{a}}{R T}}\right) \\
\ln (k)=\ln (A)+\ln \left(e^{-\frac{E_{a}}{R T}}\right) \\
\ln (\mathrm{k})=\ln (\mathrm{A})-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}}
\end{gathered}
$$

$\underset{\mathbf{y}}{\ln (\mathrm{k})}=\ln (\mathrm{A})-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \underset{\mathbf{x}}{\frac{1}{\mathrm{~T}}}$

A rate constant was measured as a function of temperature, and the following Arrhenius plot $[\ln (\mathrm{k})$ vs. 1000/T] was obtained.
Calculate A and E_{a} for this reaction.

$$
\begin{aligned}
& \ln (\mathrm{k})=\ln (\mathrm{A})-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}} \\
& \text { Slope }=\frac{\Delta \ln (\mathrm{k})}{\Delta(1 / \mathrm{T})}=\frac{0.0-4.0}{(4.2-3.0) \times 10^{-3} \mathrm{~K}^{-1}} \\
& \text { Note } \\
& \text { Slope }=-3330 \mathrm{~K}=-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \\
& \mathrm{E}_{\mathrm{a}}=-\mathrm{R} \cdot(-3330 \mathrm{~K}) \\
&=-8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}(-3330 \mathrm{~K}) \\
&=+27690 \mathrm{~J} / \mathrm{mol} \\
& \mathrm{E}_{\mathrm{a}}=27.7 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\ln (\mathrm{k})=\ln (\mathrm{A})-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}}
$$

$$
\text { Int }=\ln (\mathrm{A})=\ln \left(\mathrm{k}_{1}\right)+\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}_{1}}
$$

$$
=4.0+\frac{27,690 \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}} \cdot 3.0 \times 10^{-3} \mathrm{~K}^{-1}
$$

$$
\ln (\mathrm{A})=14.0
$$

$$
A=1.2 \times 10^{6} \mathrm{~s}^{-1}
$$

Two Point Analysis

$$
\begin{array}{r}
\ln \left(\mathrm{k}_{1}\right)=\ln (\mathrm{A})-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}_{1}} \\
\ln \left(\mathrm{k}_{2}\right)=\ln (\mathrm{A})-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}_{2}}
\end{array} \longrightarrow \ln \left(\mathrm{k}_{2}\right)-\ln \left(\mathrm{k}_{1}\right)=-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}_{2}}-\left(-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}_{1}}\right)
$$

For a first order reaction, the measured rate constant was
5. s^{-1} at $25^{\circ} \mathrm{C}$ and $15 . \mathrm{s}^{-1}$ at $35^{\circ} \mathrm{C}$.

Calculate A and E_{a} for this reaction.

$$
\begin{aligned}
& A=2.5 \times 10^{15} \mathrm{~s}^{-1} \\
& E_{a}=83.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

A second order reaction has an activation energy of $60 \mathrm{~kJ} / \mathrm{mol}$.
The rate constant is $3.0 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$.
What is the value of k at $50^{\circ} \mathrm{C}$?
$\mathrm{k}=19.5 \mathrm{M}^{-1} \mathrm{~S}^{-1}$

A first order reaction has an activation energy of $45 \mathrm{~kJ} / \mathrm{mol}$.
The half-life is 50 s at $25^{\circ} \mathrm{C}$.
At what temperature (in ${ }^{\circ} \mathrm{C}$) is the half-life equal to 10 s ?
$\mathrm{T}=54{ }^{\circ} \mathrm{C}$

Transition State Theory

The material on Transition State Theory can be found in Chapter 22 of the text (Sects. 22.4 and 22.5)
Deficiencies of the Arrhenius Theory
The Arrhenius Equation is basically empirical. Whereas the activation energy, E_{a}, can be interpreted as the energy barrier to reaction, there is no interpretation of the pre-exponential factor, A .
Furthermore, it is not possible to predict the parameters theoretically.

Transition State Theory (aka Activated Complex Theory)

In 1935, Henry Eyring applied the theoretical methods of equilibrium statistical mechanics to determine the rate constants for elementary reactions.

He assumed that the reactants are in a quasi-equilibrium with a transition state (or activated complex)

$$
A+B \stackrel{K^{ \pm}}{\rightleftarrows} A B^{ \pm}
$$

$$
A+B \stackrel{K^{ \pm}}{\rightleftarrows} A B^{ \pm}
$$

[$\left.\mathrm{AB}^{\ddagger}\right]$ is related to the reaction concentrations by the equilibrium constant, K^{\ddagger} :

$$
K^{ \pm}=\frac{\left[A B^{ \pm}\right]}{[A][B]} \quad \text { or } \quad\left[A B^{ \pm}\right]=K^{ \pm}[A][B]
$$

One particular vibration of the activated complex, v^{\ddagger}, leads to conversion of $A B^{\ddagger}$ to

Reaction coordinate products.

The rate of the reaction is then proportional to the frequency of the vibration, ν^{\ddagger}, and the concentration of activated complexes, [AB \ddagger].

Rate $=v^{ \pm}\left[A B^{ \pm}\right]=v^{ \pm} K^{ \pm}[A][B]$
Note: Many treatments of TST include a transmission coefficient, κ, representing the fraction of complexes that proceed to products. It is often assumed that $\kappa \approx 1$, as we have done here.

Rate $=v^{ \pm}\left[A B^{ \pm}\right]=v^{ \pm} K^{ \pm}[A][B]=k_{r}[A][B]$
k_{r} is the reaction rate constant, given by: $k_{r}=v^{ \pm} K^{ \pm}$
v^{\ddagger} is the frequency of the vibration of the activated complex which leads to dissociation into products
K^{\ddagger} is the equilibrium constant between reactants and activated complex.
Using statistical mechanics formulae for vibrational frequencies, it can be shown that: $v^{ \pm}=\frac{k_{B} T}{h}=\frac{R T}{N_{A} h}$
k_{B} is Boltzmann's constant, and is related to the gas constant, R, by $k_{B}=R / N_{A}$, and h is Planck's Constant $\left(6.63 \times 10^{-34} \mathrm{~J}-s\right)$

Thus, we have the TST expression for the rate constant:
$k=\frac{k_{B} T}{h} K^{ \pm}=\frac{R T}{N_{A} h} K^{ \pm}$
$k=\frac{k_{B} T}{h} K^{ \pm}=\frac{R T}{N_{A} h} K^{ \pm}$
One advantage of Transition State Theory over the Arrhenius Theory is that Statistical Mechanical methods have been well studied to predict equilibrium constants.

Thus, one can use the equation above to predict values for the rate constants of elementary reactions.

However, a big advantage of TST for experimental kineticists is that, as we shall see, the TST expression for the rate constant, like the Arrhenius Equation, has two parameters.

Unlike the Arrhenius Equation, both TST parameters are interpretable.

Thermodynamic Formulation of TST

$k=\frac{R T}{N_{A} h} K^{ \pm}$
The equilibrium constant, K^{\ddagger}, may be related to the Gibbs Activation Energy, $\Delta \mathbf{G}^{\ddagger}$, and to the Activation Enthalpy, $\Delta \mathrm{H}^{\ddagger}$ and Activation Entropy, $\Delta \mathrm{S}^{\ddagger}$, by the standard relations:
$\Delta G^{ \pm}=-R T \ln \left(K^{ \pm}\right)=\Delta H^{ \pm}-T \Delta S^{ \pm} \longrightarrow \ln \left(K^{ \pm}\right)=-\frac{\Delta H^{ \pm}}{R T}+\frac{\Delta S^{ \pm}}{R}$
Therefore: $K^{ \pm}=e^{-\frac{\Delta H^{ \pm}}{R T}+\frac{\Delta S^{ \pm}}{R}}=e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}}$

Thus, the TST equation for the rate constant is:

$$
k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}}
$$

$$
k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}}
$$

Note: The equation in the text (Eqn. 22.43) differs from the one above:

$$
k=\frac{R T}{N_{A} h}\left(\frac{R T}{p^{o}}\right) e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} \quad \text { Text Eqn. } 22.43 \text { after minor manipulation }
$$

A comparison shows that the text equation has the additional factor, RT/p ${ }^{\circ}$.

That term arises from the conversion from K_{p} to K_{c}. These are different by that factor for bimolecular gas phase reactions.

However, for reactions in solution and for unimolecular gas phase reactions, K_{p} and K_{c} are the same. The form of the equation that we present is the correct one for these cases.

It is useful to compare the TST and Arrhenius equations for the rate constant:

$$
\begin{array}{ll}
k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} & k=A e^{-\frac{E_{a}}{R T}} \\
\begin{array}{c}
\text { Transition State } \\
\text { Theory }
\end{array} & \begin{array}{c}
\text { Arrhenius } \\
\text { Theory }
\end{array}
\end{array}
$$

Note that TST has two parameters ($\Delta \mathrm{H}^{\ddagger}$ and $\left.\Delta \mathrm{S}^{\ddagger}\right)$ just like the Arrhenius Theory (E_{a} and A). However, both TST parameters have a mechanistic interpretation.
$\Delta \mathrm{H}^{\ddagger}$, the Activation Enthalpy, has a meaning qualitatively similar to E_{a}. It represents the barrier which the colliding molecules must overcome in order to react to form products.
ΔS^{\ddagger}, the Activation Entropy, represents the relative amount of disorder of the activated complex compared to reactants.
This parameter is often very useful in determining the mechanism of the reaction.
ΔS^{\ddagger}, the Activation Entropy, represents the relative amount of disorder of the activated complex compared to reactants.
This parameter is often very useful in determining the mechanism of the reaction.

Metal Carbonyl Substitution

$\mathrm{L}+\mathrm{M}(\mathrm{CO})_{6} \rightarrow \mathrm{ML}(\mathrm{CO})_{5}+\mathrm{CO}$
Associative: $\mathrm{L}+\mathrm{M}(\mathrm{CO})_{6} \rightarrow \mathrm{ML}(\mathrm{CO})_{6} \rightarrow \mathrm{ML}(\mathrm{CO})_{5}+\mathrm{CO} \quad \Delta \mathrm{S}^{\ddagger}<0$
Dissociative: $\mathrm{L}+\mathrm{M}(\mathrm{CO})_{6} \rightarrow \mathrm{~L}+\mathrm{M}(\mathrm{CO})_{5}+\mathrm{CO}$

$$
\rightarrow \mathrm{ML}(\mathrm{CO})_{5}+\mathrm{CO} \quad \Delta \mathrm{~S}^{\ddagger}>0
$$

Ring Opening Reaction

If $\Delta \mathrm{S}^{\ddagger} \approx 0$, the ring structure is preserved in the transition state.
If $\Delta S^{\ddagger}>0$, the ring has opened in the transition state

Determination of the TST Parameters

A linearized form of the TST equation can be developed in the following manner.
$k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} \longrightarrow k / T=\frac{R}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}}$
$\ln (k / T)=\ln \left(\frac{R}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}}\right)=\ln \left(R / N_{A} h\right)+\frac{\Delta S^{ \pm}}{R}-\frac{\Delta H^{ \pm}}{R T}=C-\frac{\Delta H^{ \pm}}{R T}$
where $C=\ln \left(R / N_{A} h\right)+\frac{\Delta S^{ \pm}}{R}$

One expects a plot of $\ln (k / T)$ vs. $1 / T$ will be a straight line

$$
\ln (k / T)=\ln \left(R / N_{A} h\right)+\frac{\Delta S^{ \pm}}{R}-\frac{\Delta H^{ \pm}}{R T}=C-\frac{\Delta H^{ \pm}}{R T} \quad C=\ln \left(R / N_{A} h\right)+\frac{\Delta S^{ \pm}}{R}
$$

Relation Between TST and Arrhenius Parameters

Relation between E_{a} and $\Delta \mathrm{H}^{\ddagger}$

Recall that we showed that the Arrhenius Equation leads to an expression relating E_{a} to $d \ln (k) / d T$.

$$
k=A e^{-\frac{E_{a}}{R T}} \longrightarrow \frac{d \ln (k)}{d T}=+\frac{E_{a}}{R T^{2}}
$$

Let's use this to relate E_{a} to $\Delta \mathrm{H}^{\ddagger}$.
$k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta H^{ \pm}}{R T}} \longrightarrow \ln (k)=\ln \left(R / N_{A} h\right)+\ln (T)+\frac{\Delta S^{ \pm}}{R}-\frac{\Delta H^{ \pm}}{R T}$
Therefore: $\quad \frac{d \ln (k)}{d T}=0+\frac{1}{T}+0+\frac{\Delta H^{ \pm}}{R T^{2}}=\frac{\Delta H^{ \pm}}{R T^{2}}+\frac{1}{T}$
Then: $\frac{E_{a}}{R T^{2}}=\frac{\Delta H^{ \pm}}{R T^{2}}+\frac{1}{T} \longrightarrow E_{a}=\Delta H^{ \pm}+R T$

$$
\text { or } \quad \Delta H^{ \pm}=E_{a}-R T
$$

$$
E_{a}=\Delta H^{ \pm}+R T
$$

or $\Delta H^{ \pm}=E_{a}-R T$
The difference between the TST Activation Enthalpy and the Arrhenius Activation Energy is not especially large for reactions around room temperature.

For example, if $\Delta \mathrm{H}^{\ddagger}=50.0 \mathrm{~kJ} / \mathrm{mol}$, then:
At $300 \mathrm{~K}: \quad E_{a}=50.0 \mathrm{~kJ}+\left(8.31 x 10^{-3} \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{K}\right)(300 \mathrm{~K})=52.5 \mathrm{~kJ} / \mathrm{mol}$
i.e. approximately 5% higher

However, there is a major interest in high temperature kinetics (e.g. in combustion chemistry), in which reactions occur at 1500 K to 2000 K or higher.
At $1500 \mathrm{~K}: E_{a}=50.0 \mathrm{~kJ}+\left(8.31 \times 10^{-3} \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{K}\right)(1500 \mathrm{~K})=62.5 \mathrm{~kJ} / \mathrm{mol}$
i.e. approximately 25% higher.

Thus, one observes a very significant deviation between the two parameters at elevated temperatures.

Relation between A and $\Delta \mathbf{S}^{\ddagger}$

$\Delta H^{ \pm}=E_{a}-R T$
Let's substitute this relation into the TST Equation:
$k=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{\Delta A^{ \pm}}{R T}}=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{E_{o}-R T}{R T}}=\frac{R T}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{E_{o}}{R T}} e^{-\frac{-R T}{R T}}=\frac{R T e}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}} e^{-\frac{E_{o}}{R T}}$
Thus: $k=\frac{R T e}{N_{A} h} e^{\frac{\Delta s^{ \pm}}{R}} e^{-\frac{E_{o}}{R T}}=A e^{-\frac{E_{o}}{R T}}$
This gives: $A=\frac{R T e}{N_{A} h} e^{\frac{\Delta S^{ \pm}}{R}}$
Therefore, we see that $A \propto \frac{R T e}{N_{A} h} e^{\frac{\Delta s^{t}}{R}}$ showing that the Arrhenius pre-exponential factor is an indirect measure of the Activation Enthalpy.

It is instructive to evaluate A (at room temperature) for $\Delta \mathrm{S}^{\ddagger}=0$:
$A \propto \frac{R T e}{N_{A} h} e^{\frac{\Delta s^{ \pm}}{R}}=\frac{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})(298 \mathrm{~K})(2.72)}{\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)} e^{0}=1.7 \times 10^{13} \mathrm{~s}^{-1}$
Therefore, as a rule of thumb, if an experimental activation energy is:
$\mathrm{A}<1.7 \times 10^{13} \mathrm{~s}^{-1} \rightarrow \Delta \mathrm{~S}^{\ddagger}<0$, and
$A>1.7 \times 10^{13} \mathrm{~s}^{-1} \rightarrow \Delta \mathrm{~S}^{\ddagger}>0$

\mathbf{A}	$\Delta \mathbf{S}^{\ddagger}$
1×10^{16}	$+52 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
1×10^{15}	+34
1×10^{14}	+15
1×10^{13}	-4
1×10^{12}	-24

Catalysis

Reaction Coordinate

$$
k=A e^{-\frac{E_{a}}{R T}}
$$

We learned that k, and hence the reaction rate, can be increased by raising the temperature.
At higher temperatures, a greater fraction of collisions have an energy greater than the activation energy, E_{a}.

A second way to increase the rate of a reaction is to add a catalyst.
This is a species which increases the reaction rate without being consumed in the reaction.
It accomplishes this by providing an alternative reaction pathway with a lower activation energy, E_{a}.

Accounting for the Rate Laws

Most reactions require more than a single step. The reaction mechanism is the detailed series of individual steps required for transformation of the reactants to products.

Elementary Reactions

Sometimes, a reaction occurs in a single step. In this case, the rate law can be written immediately by inspection of the reaction stoichiometry.

$$
\begin{aligned}
\mathrm{H}_{2}+\mathrm{I}_{2} \xrightarrow{\mathbf{k}} 2 \mathrm{HI} \\
\mathrm{R}=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{l}_{2}\right]
\end{aligned}
$$

Note that the converse is not necessarily true;
i.e. if the experimental rate law follows the stoichiometry of the overall reaction, the mechanism may still be more than a single step.

Elementary First Order Reactions

Consider the simple first order reaction: $A \rightarrow P$
If it is an elementary reaction, the rate law is: Rate $=-\frac{d[A]}{d t}=k[A]$
Assuming that $[\mathrm{A}](\mathrm{t}=0)=[\mathrm{A}]_{\circ}$ and $[\mathrm{P}](\mathrm{t}=0)=0$, this equation integrates to:

$$
[\mathrm{A}]=[\mathrm{A}]_{0} e^{-k t}
$$

One can also determine $[\mathrm{P}]$ from the relation: $[\mathrm{P}]=[\mathrm{A}]_{0}-[\mathrm{A}]$
$[P]=[A]_{0}-[A]=[A]_{0}-[A]_{0} e^{-k t}$ or $[P]=[A]_{0}\left(1-e^{-k t}\right)$
Thus we see that:
(1) $[A]$ decreases exponentially from $[A]_{o}$ to 0
(2) Simultaneously, $[B]$ increases exponentially from 0 to $[A]_{\text {o }}$

Consecutive First Order Reactions

Consider two consecutive first order reactions: $A \xrightarrow{k_{1}} I \xrightarrow{k_{2}} P$
The initial reactant, A, forms an intermediate, I, when then reacts to form the product, P .

The rate equations for each species are:

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}] \quad \frac{\mathrm{d}[\mathrm{l}]}{\mathrm{dt}}=+\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{2}[\mathrm{l}] \quad \frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=+\mathrm{k}_{2}[\mathrm{I}]
$$

Reactant Concentration, [A]

This integrates fairly easily

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}] \rightarrow[\mathrm{A}]=[\mathrm{A}]_{o} e^{-k_{1} t}
$$

$$
\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{I} \xrightarrow{\mathrm{k}_{2}} \mathrm{P} \quad \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}] \quad \frac{\mathrm{d}[\mathrm{I}]}{\mathrm{dt}}=+\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{2}[I] \quad \frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=+\mathrm{k}_{2}[\mathrm{I}]
$$

Intermediate Concentration, [I]

Plug in concentration, [A]
$\frac{d[I]}{d t}=+\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{2}[I] \longrightarrow \frac{\mathrm{d}[I]}{\mathrm{dt}}=+\mathrm{k}_{1}[\mathrm{~A}]_{o} \mathrm{e}^{-\mathrm{k}_{1} t}-\mathrm{k}_{2}[I]$
This is an inhomogeneous first order differential equation, which can be solved using standard (but advanced) techniques to yield:

$$
[I]=\frac{k_{1}}{k_{2}-k_{1}}[A]_{0}\left\{e^{-k_{1} t}-e^{-k_{2} t}\right\}
$$

$$
\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{I} \xrightarrow{\mathrm{k}_{2}} \mathrm{P} \quad \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}] \quad \frac{\mathrm{d}[I]}{\mathrm{dt}}=+\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{2}[I] \quad \frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}=+\mathrm{k}_{2}[I]
$$

Product Concentration, [P]

$\frac{d[P]}{d t}=+k_{2}[I] \quad \begin{aligned} & \text { One can plug in }[I] \text { and solve this differential equation. } \\ & \text { However, it's easier to just use: }[P]=[A]_{O}-[A]-[I]\end{aligned}$

This yields: $[P]=[A]_{0}\left\{1+\frac{k_{1} e^{-k_{2} t}-k_{2} e^{-k_{1} t}}{k_{2}-k_{1}}\right\}$

Yecch!!!! However, you do NOT have to memorize these results.

Concentrations at $\mathbf{t}=\mathbf{0}$ and $\mathbf{t} \rightarrow \infty$

$$
\begin{aligned}
{[\mathrm{A}]=[\mathrm{A}]_{o} e^{-k_{1} t} } & {[\mathrm{~A}](\mathrm{t}=0)=[\mathrm{A}]_{\circ} } \\
& {[\mathrm{A}](\mathrm{t} \rightarrow \infty)=0 }
\end{aligned}
$$

$[I]=\frac{k_{1}}{k_{2}-k_{1}}[A]_{0}\left\{e^{-k_{1} t}-e^{-k_{2} t}\right\} \quad \begin{aligned} & {[I](t=0)=0} \\ & {[I](t \rightarrow \infty)=0}\end{aligned}$

$$
[1](t \rightarrow \infty)=0
$$

$[P]=[A]_{0}\left\{1+\frac{k_{1} e^{-k_{2} t}-k_{2} e^{-k_{1} t}}{k_{2}-k_{1}}\right\} \quad \begin{aligned} & {[P](t=0)=0} \\ & \\ & {[P](t \rightarrow \infty)=[A]_{0}}\end{aligned}$
Note that the concentrations of all three species at the start and end of the reaction are the values that one expects physically.
[A] decreases monotonically towards 0
[I] first increases and then decreases back towards 0
$[P]$ increases monotonically towards $[A]_{0}$

Limiting Case： $\mathbf{k}_{\mathbf{1}} \gg \mathbf{k}_{\mathbf{2}}$

One expects that $[A]$ will drop very rapidly towards 0 and $[1]$ should rise quickly up to almost $[\mathrm{A}]_{0}$

One then has a simple first order reaction： ［I］will drop exponentially towards 0 ［P］will rise exponentially towards［A］。

Limiting Case： $\mathbf{k}_{\mathbf{2}} \gg \mathbf{k}_{\mathbf{1}}$

One expects that［l］will rise only very slightly from 0 because it will be used up almost immediately by the second，very fast reaction．

One expects that：
［A］will drop exponentially from［A］。 ［l］will rise slightly，but remain constant ［P］will rise exponentially towards［A］。

We shall consider this limiting case in more detail soon．It represents a very good introduction to the Steady State Approximation．

Mechanisms and Rate Laws

We have already seen that if a reaction involves only a single elementary step, then the rate law may be written directly from the reaction stoichiometry.

Sometimes, a reaction occurs in a single step. In this case, the rate law can be written immediately by inspection of the reaction stoichiometry.

$$
\begin{array}{r}
\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI} \\
\mathrm{R}=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]
\end{array}
$$

However, more commonly, a reaction occurs in a series of elementary steps, in which case the rate law may differ significantly from the reaction stoichiometry

Slow Rate Determining Step (RDS)

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{I}^{-}} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

Observed Rate Law: $\mathrm{R}=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$

Mechanism: (1) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \xrightarrow{\mathrm{h}} \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-} \quad$ Slow RDS
(2) $\mathrm{IO}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{I}^{-}$Fast

$$
\mathrm{R}=\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt} \approx \mathrm{~d}[1 \mathrm{O}-] / \mathrm{dt}=\mathrm{k}\left[\mathrm { H } _ { 2 } \mathrm { O } _ { 2 } \left[\left[^{-}\right]\right.\right.
$$

Pre-Equilibrium: Hydrolysis of Sucrose

Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ Glucose + Fructose Catalyzed by $\left[\mathrm{H}^{+}\right]$
Observed Rate Law: $R=k[S u c]\left[H^{+}\right]\left[H_{2} \mathrm{O}\right]$

For the reaction, $\mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})+\mathrm{T}{ }^{3+}(\mathrm{aq}) \rightarrow 2 \mathrm{Hg}^{2+}(\mathrm{aq})+\mathrm{Tl}^{+}(\mathrm{aq})$
the observed rate law is: $r=\frac{d\left[T l^{+}\right]}{d t}=k^{\prime} \frac{\left[\mathrm{Hg}_{2}^{2+}\right]\left[T l^{3+}\right]}{\left[\mathrm{Hg}^{2+}\right]}$
Show that the mechanism below is consistent with the observed rate law.

K
Mechanism: $\mathrm{Hg}_{2}^{2+}=\mathrm{Hg}+\mathrm{Hg}^{2+} \quad$ Fast Pre-Equilibrium

$$
\mathrm{Hg}+\mathrm{Tl}^{3+} \rightarrow \mathrm{Hg}^{2+}+\mathrm{Tl}^{+} \quad \text { Slow RDS }
$$

$$
r=\frac{d\left[T l^{+}\right]}{d t}=k_{2} K \frac{\left[\mathrm{Hg}_{2}^{2+}\right]\left[T l^{3+}\right]}{\left[\mathrm{Hg}^{2+}\right]}=k^{\prime} \frac{\left[\mathrm{Hg}_{2}^{2+}\right]\left[T l^{3+}\right]}{\left[\mathrm{Hg}^{2+}\right]}
$$

The Steady-State Approximation

In a multi-step reaction, it will often occur that the intermediate is very unstable, and decays rapidly to product.

In these cases, it is valid to assume that, after an initial induction period, the concentration of the intermediate will remain approximately constant and very low.

One may then solve for the rate law by assuming that the rate of change of the intermediate is approximately zero.

A classic case where the steady-state approximation is valid is for consecutive first order reactions when the rate constant for the step removing the intermediate, I , is much greater than the rate constant for creating the intermediate:

Limiting Case: $k_{2} \gg k_{1}$

Limiting Case: $\mathbf{k}_{\mathbf{2}} \gg \mathrm{k}_{\mathbf{1}}$

We will use the steady-state approximation on [l] to determine the concentrations, $[1]$ and $[P]$ as a function of time.

We will then compare the result with the exact solution, which was presented earlier.

$$
\begin{array}{r}
\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{I} \xrightarrow{\mathrm{k}_{2}} \mathrm{P} \\
\frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{~A}] \longrightarrow[\mathrm{A}]=[\mathrm{A}]_{0} e^{-k_{1} t}
\end{array}
$$

Apply the Steady-State Approximation: $\mathrm{d}[1] / \mathrm{dt} \approx 0$

$$
\begin{aligned}
& \frac{\mathrm{d}[1]}{\mathrm{dt}}=+\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{2}[I] \approx 0 \longrightarrow[I]=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}[\mathrm{~A}]=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\left[\mathrm{~A}_{0}\right] \mathrm{e}^{-k_{1} t} \\
& \frac{\mathrm{~d}[\mathrm{P}]}{\mathrm{dt}}=+\mathrm{k}_{2}[I]=+\mathrm{k}_{2}\left\{\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}[\mathrm{~A}]_{0} \mathrm{e}^{-\mathrm{k}_{1} t}\right\}=\mathrm{k}_{1}[\mathrm{~A}]_{0} \mathrm{e}^{-k_{1} t} \\
& \text { This integrates to (in class): }[\mathrm{P}]=[\mathrm{A}]_{o}\left\{1-\mathrm{e}^{-k_{1} t}\right\}
\end{aligned}
$$

$$
A \xrightarrow{k_{1}} I \xrightarrow{k_{2}} P
$$

Exact Solution

Approximate Solution

$$
\begin{array}{ll}
{[\mathrm{A}]=[\mathrm{A}]_{0} e^{-k_{1} t}} & {[\mathrm{~A}]=[\mathrm{A}]_{o} e^{-k_{1} t}} \\
{[\mathrm{I}]=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}-\mathrm{k}_{1}}[\mathrm{~A}]_{0}\left\{e^{-\mathrm{k}_{1} t}-\mathrm{e}^{-\mathrm{k}_{2} t}\right\}} & {[\mathrm{I}]=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}[\mathrm{~A}]=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\left[\mathrm{~A} \mathrm{~A}_{0}\right] \mathrm{e}^{-\mathrm{k}_{1} t}} \\
{[\mathrm{P}]=[\mathrm{A}]_{0}\left\{1+\frac{\mathrm{k}_{1} \mathrm{e}^{-\mathrm{k}_{2} t}-\mathrm{k}_{2} \mathrm{e}^{-\mathrm{k}_{1} t}}{\mathrm{k}_{2}-\mathrm{k}_{1}}\right\}} & {[\mathrm{P}]=[\mathrm{A}]_{0}\left\{1-\mathrm{e}^{-\mathrm{k}_{1} t}\right\}}
\end{array}
$$

As we show in class, the exact solutions for the concentrations of $[I]$ and $[P]$ reduce to the approximate solutions using the steady-state approach in the limit that $k_{2} \gg k_{1}$

The steady-state approximation is a less restrictive mechanism than assuming a rapid pre-equilibrium. Let's apply this method to a practical example

Example: $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

$$
\begin{array}{rll}
\text { Observed Rate Law: } & R=k^{\prime}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] & \text { at low }\left[\mathrm{O}_{2}\right] \\
& R=k^{\prime \prime}[\mathrm{NO}]^{2} & \text { at high[O}\left[\mathrm{O}_{2}\right] \\
\text { Mechanism: } & 2 \mathrm{NO} \xrightarrow{\mathrm{k}_{1}} \mathrm{~N}_{2} \mathrm{O}_{2} & \text { Create Intermediate } \\
& \mathrm{N}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{k}_{-1}} 2 \mathrm{NO} & \text { Reverse of first step } \\
\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NO}_{2} & \text { Slow RDS }
\end{array}
$$

Shorthand: $\quad 2 \mathrm{NO} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} \mathrm{~N}_{2} \mathrm{O}_{2}$

$$
\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NO}_{2}
$$

$$
\begin{gathered}
2 \mathrm{NO} \underset{\underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} \mathrm{~N}_{2} \mathrm{O}_{2}}{\stackrel{\mathrm{k}_{2}}{\longrightarrow}} 2 \mathrm{NO}_{2} \\
\mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \stackrel{\left(\mathrm{~N}^{2}\right.}{\mathrm{R}}=\mathrm{k}_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right]=\frac{\mathrm{k}_{1} \mathrm{k}_{2}\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\mathrm{k}_{-1}+\mathrm{k}_{2}\left[\mathrm{O}_{2}\right]}
\end{gathered}
$$

Steady-State Approximation on $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$

$$
\begin{gathered}
\Delta\left[\mathrm{N}_{2} \mathrm{O}_{2}\right] / \Delta \mathrm{t}=0=+\mathrm{k}_{1}[\mathrm{NO}]^{2}-\mathrm{k}_{-1}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]-\mathrm{k}_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right] \\
{\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]\left\{\mathrm{k}_{-1}+\mathrm{k}_{2}\left[\mathrm{O}_{2}\right]\right\}=\mathrm{k}_{1}[\mathrm{NO}]^{2}} \\
\downarrow \\
{\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]=\frac{\mathrm{k}_{1}\left[\mathrm{NO}^{2}\right.}{\mathrm{k}_{-1}+\mathrm{k}_{2}\left[\mathrm{O}_{2}\right]}}
\end{gathered}
$$

$$
\mathrm{R}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}{\mathrm{k}_{-1}+\mathrm{k}_{2}\left[\mathrm{O}_{2}\right]}
$$

Limiting Cases

$$
\begin{array}{rlrl}
\text { Low }\left[\mathrm{O}_{2}\right] & \mathrm{R}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}{\mathrm{k}_{2}\left[\mathrm{O}_{2}\right] \ll \mathrm{k}_{-1}} & =\left(\mathrm{k}_{1} \mathrm{k}_{2} / \mathrm{k}_{-1}\right)\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right. \\
& =\mathrm{k}^{\prime}\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.
\end{array}
$$

Note: If we had employed the approximation of a rapid-preequilibrium to this reaction, we would have obtained the above rate equation.

Unimolecular Gas Phase Reactions

A(g) \rightarrow Products (g)
Examples: $\quad \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \quad$ Decompositon

Observed Rate Law:

$$
\begin{array}{ll}
R=k^{\prime}[A]^{2} & \text { at low }[A] \\
R=k^{\prime}[A] & \text { at high }[A]
\end{array}
$$

Mechanism: $\quad A+A \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} A^{*}+A \quad A^{*}$ is an "activated" molecule
$\mathrm{A}^{*} \xrightarrow{\mathbf{k}_{\mathbf{2}}}$ Products

$$
\begin{aligned}
A+A & \underset{\mathrm{k}_{-1}}{\stackrel{k_{1}}{\longrightarrow}} A^{*}+A \\
A^{*} & \stackrel{k_{2}}{\rightarrow} \text { Products }
\end{aligned}
$$

If one applies the Steady-State approximation to the concentration, [A*], it can be shown (in class) that:

$$
\mathrm{R}=\Delta[\text { Products }] / \Delta \mathrm{t}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}[\mathrm{~A}]^{2}}{\mathrm{k}_{2}+\mathrm{k}_{-1}[\mathrm{~A}]}
$$

Limiting Cases

$$
\begin{aligned}
\text { low }[A]: k_{-1}[A] \ll k_{2} & \text { high }[A]: k_{-1}[A] \gg k_{2} \\
R=\frac{k_{1} k_{2}[A]^{2}}{k_{2}+} & R=\frac{k_{1} k_{2}[A]^{2}}{R}=k_{1}[A]^{2}=k_{-1}^{\prime}[A]^{2}
\end{aligned} \quad R=\left(k_{1} k_{2} / k_{-1}\right)[A]=k^{\prime \prime}[A] .
$$

Photochemistry

Many important reactions are initiated photochemically; i.e. via the absorption of a photon of light.

Unimolecular Reactions: $\mathrm{A}+\mathrm{h} \nu \rightarrow \mathrm{A}^{*} \rightarrow$ Products
Bimolecular Reactions: $\mathrm{A}+\mathrm{h} \nu \rightarrow \mathrm{A}^{*}+\mathrm{B} \rightarrow$ Products

Two advantages of photochemical reactions are that:

1. The reaction may not occur thermally
2. The photochemically induced reaction may be more selective than the thermal reaction of the same substrate(s)

A number of primary photochemical deexcitation processes compete with the formation of products by the excited state.

Therefore, it is important to consider the time scales of the various excitation and decay processes of excited state molecules.

Decay Processes

Non-Radiative Decay
IC Internal Conversion
$\mathrm{S} \rightarrow \mathrm{S}$ or $\mathrm{T} \rightarrow \mathrm{T}$
ISC Inter-System Crossing
$\mathrm{S} \rightarrow \mathrm{T}$ or $\mathrm{T} \rightarrow \mathrm{S}$
Radiative Decay
F Fluorescence
$\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$ Emission
P Phosphorescence
$\mathrm{T}_{1} \rightarrow \mathrm{~S}_{0}$ Emission

Relation Between Absorption and Fluorescence

The fluorescence spectrum occurs at lower frequency than the UV (or visible) absorption spectrum.
They are (approximately) mirror images of each other.

Fluorescence and Phosphorescence Lifetimes

$\tau_{\mathrm{P}} \gg \tau_{\mathrm{F}}$ because Triplet-Singlet transitions are "spin forbidden".
Because phosphorescence lifetimes are so extremely long, one rarely observes phosphorescence in aqueous solutions; the Triplet state is depleted by collisional processes.

Transient Singlet State Kinetics

Once molecules have been excited from S_{0} to S_{1} by a transient laser pulse, they will have three modes of decays:

1. Fluorescence:
$S_{1} \xrightarrow{k_{F}} S_{0}$
2. Intersystem Crossing: $S_{1} \xrightarrow{k_{S C}} T_{1}$
3. Internal Conversion: $\quad S_{1} \xrightarrow{k_{r C}} S_{0}$

The overall rate of change of $\left[\mathrm{S}_{1}\right]$ is given by:

$\frac{d\left[S_{1}\right]}{d t}=-k_{F}\left[S_{1}\right]-k_{I S C}\left[S_{1}\right]-k_{I C}\left[S_{1}\right]=-k_{0}\left[S_{1}\right]$
where $k_{0}=k_{F}+k_{I S C}+k_{I C}=\frac{1}{\tau_{0}}$
$\frac{d\left[S_{1}\right]}{d t}=-k_{F}\left[S_{1}\right]-k_{I S C}\left[S_{1}\right]-k_{I C}\left[S_{1}\right]=-k_{0}\left[S_{1}\right]$ where $k_{0}=k_{F}+k_{I S C}+k_{I C}=\frac{1}{\tau_{0}}$
This is straightforward to integrate to get:
$\ln \left(\frac{\left[S_{1}\right]}{\left[S_{1}\right]_{0}}\right)=-k_{0} t \quad$ or $\quad\left[S_{1}\right]=\left[S_{1}\right]_{0} e^{-k_{0} t}=\left[S_{1}\right]_{0} e^{-k_{0} t}=\left[S_{1}\right]_{0} e^{-\frac{t}{\tau_{0}}}$

Thus $\left[\mathrm{S}_{1}\right]$ decays exponentially from its initial value with a decay time, τ_{0}.

One can monitor $\left[\mathrm{S}_{1}\right]$ as a function of time from the fluorescence intensity, I_{F}.

Singlet State Lifetimes From Pulsed Laser Fluorescence

1. Excite molecules from S_{0} to S_{1} with a short (<1 ns) laser pulse.
2. Monitor the fluorescence intensity as a function of time.

$$
I_{F}=\left(I_{F}\right)_{0} e^{-\frac{t}{T_{0}}}
$$

$\ln \left(I_{F}\right)=\ln \left(I_{F}\right)_{0}+\ln \left(e^{-\frac{t}{T_{0}}}\right)$

The Quantum Yield (Φ)

The quantum yield for a process is a measure of the efficiency of absorbed photons in inducing the process to occur.

The quantum yield can be defined either in terms of
(a) the rate of the process relative to the rate of photon absorption, or
(b) the number of moles undergoing the process relative to the number of moles of photons absorbed.

Rate: $\quad \Phi_{\text {proc }}=\frac{\text { Rate of } \operatorname{Pr} \text { ocess }}{\text { Rate of photon absorption }}=\frac{\text { Rate of } \operatorname{Pr} \text { ocess }}{I_{\text {abs }}}$
Amount:* $\quad \Phi_{\text {proc }}=\frac{\text { Moles of Molecules Undergoing Pr ocess }}{\text { Moles of Photons Absorbed }}$
*Notes: (1) One has an equivalent definition using molecules instead of moles.
(2) 1 mole of photons is often referred to as 1 einstein.

Rate: $\quad \Phi_{\text {proc }}=\frac{\text { Rate of } \operatorname{Pr} \text { ocess }}{\text { Rate of photon absorption }}=\frac{\text { Rate of } \operatorname{Pr} \text { ocess }}{I_{\text {abs }}}$
Amount:* $\quad \Phi_{\text {proc }}=\frac{\text { Moles of Molecules Undergoing } \operatorname{Pr} \text { ocess }}{\text { Moles of Photons Absorbed }}$

Primary Processes

These are processes (such as fluorescence, phosphorescence, intersystem crossing, etc.) in which 1 absorbed photon can induce only 1 molecule to undergo the process.

For primary processes, $0 \leq \Phi_{\text {process }} \leq 1$

Secondary Processes

These are processes in which 1 absorbed photon can indirectly induce the process to occur multiple times. Typically, these are reactions.

For secondary processes, $0 \leq \Phi_{\text {process }} \leq \infty$
Chain reactions often have $\Phi_{R}>1$

A Chain Reaction Quantum Yield:
 Chlorination of Methane

Reaction: $\mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
Mechanism: (1) $\mathrm{Cl}_{2}+\mathrm{h} v \rightarrow 2 \mathrm{Cl} \cdot \quad$ Chain Initiation
(2) $\mathrm{Cl} \bullet+\mathrm{CH}_{4} \rightarrow \mathrm{HCl}+\mathrm{CH}_{3} \cdot \quad$ Chain Propagation
(3) $\mathrm{CH}_{3} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot$ Chain Propagation
(4) $\mathrm{Cl} \cdot+\mathrm{Cl} \bullet+\mathrm{M} \rightarrow \mathrm{Cl}_{2}+\mathrm{M} \quad$ Chain Termination*

* M is an inert body to absorb excess translational energy.

$$
\Phi_{R}=\frac{\text { Moles of } \mathrm{CH}_{3} \mathrm{Cl} \text { Pr oduced }}{\text { Moles of Photons Absorbed }} \approx 1,000-10,000
$$

Reaction Quantum Yield Examples

Example 1 (like Exer. 21.21a)

In a photochemical reaction, $A \rightarrow B+3 C$, the quantum yield with 500 nm radiation is $160 \mathrm{~mol} /$ einstein (1 einstein $=1 \mathrm{~mol}$ of photons). After exposure of a sample of A to the light for a period of time, 0.36 mol of C was formed.

How many photons of light were absorbed during the time period.

$$
N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
\mathrm{N}_{\mathrm{ph}}=4.5 \times 10^{20}
$$

Reaction Quantum Yield Examples

Example 2 (Exer. 21.22b)
In an experiment to measure the quantum yield of a photochemical reaction, the absorbing substance was exposed to 320 nm radiation from a 87.5 W source for 28.0 min . The intensity of the transmitted light was 25.7% that of the incident light.

As a result of irradiation, 0.324 mol of the absorbing substance decomposed.
Determine the reaction quantum yield, Φ_{R}.
Additional Information:
$E_{p h}=h \nu=\frac{h c}{\lambda(\mathrm{~m})}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\lambda(\mathrm{m})}=\frac{1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}}{\lambda(\mathrm{~m})}$
Note: This relation will be furnished on a test if needed.

$$
\Phi_{R}=1.11
$$

Steady-State Singlet Kinetics: The Fluorescence Quantum Yield

In an experiment where there is continuous irradiation of the sample, the excited Singlet will reach a steady-state concentration, $\left[\mathrm{S}_{1}\right]$.
We will perform the kinetic analysis to solve for the steady-state concentration and use the result to determine the fluorescence quantum yield, Φ_{F}

Processes

1. Photon Absorption:

2. Fluorescence:

3. Intersystem Crossing: $S_{1} \xrightarrow{k_{S C}} T_{1}$
4. Internal Conversion: $S_{1} \xrightarrow{k_{C C}} S_{0}$

Note: The rate of the absorption step is: $\frac{d\left[S_{1}\right]}{d t}=+I_{a b s}$

1. Photon Absorption: $S_{0} \xrightarrow{I_{a d s}} S_{1}$
2. Fluorescence:
$S_{1} \xrightarrow{k_{F}} S_{0}$
3. Intersystem Crossing: $S_{1} \xrightarrow{k_{S C}} T_{1}$
4. Internal Conversion: $S_{1} \xrightarrow{k_{i c}} S_{0}$

Steady-State concentration, $\left[\mathrm{S}_{1}\right]$
$\frac{d\left[S_{1}\right]}{d t}=0=+I_{a b s}-k_{F}\left[S_{1}\right]-k_{I S C}\left[S_{1}\right]-k_{I C}\left[S_{1}\right]=I_{a b s}-k_{0}\left[S_{1}\right]$
where (as before): $k_{0}=\frac{1}{\tau_{0}}=k_{F}+k_{I S C}+k_{I C}$
Solving for $\left[\mathrm{S}_{1}\right]$ yields $\left[S_{1}\right]=\frac{I_{a b s}}{k_{0}}=\frac{I_{a b s}}{k_{F}+k_{I S C}+k_{I C}}$

The Fluorescence Quantum Yield

$$
\left[S_{1}\right]=\frac{I_{a b s}}{k_{F}+k_{I S C}+k_{I C}}=\frac{I_{a b s}}{k_{0}}
$$

The fluorescence quantum yield is given by:

$$
\Phi_{F}=\frac{\text { Fluorescence Rate }}{\text { Photon Absorption Rate }}=\frac{k_{F}\left[S_{1}\right]}{I_{\text {abs }}}
$$

Substituting the expression for $\left[\mathrm{S}_{1}\right]$ then yields:

$$
\Phi_{F}=\frac{k_{F}\left[S_{1}\right]}{I_{a b s}}=\frac{k_{F}}{I_{a b s}}\left(\frac{I_{a b s}}{k_{F}+k_{I S C}+k_{I C}}\right)=\frac{k_{F}}{k_{F}+k_{I S C}+k_{I C}}=\frac{k_{F}}{k_{0}}=k_{F} \tau_{0}
$$

This result is intuitively reasonable, and shows that the quantum yield is the ratio of the fluorescence rate constant divided by the sum of rate constants for all S_{1} depletion processes.
$\Phi_{F}=\frac{k_{F}\left[S_{1}\right]}{I_{a b s}}=\frac{k_{F}}{I_{a b s}}\left(\frac{I_{a b s}}{k_{F}+k_{I S C}+k_{I C}}\right)=\frac{k_{F}}{k_{F}+k_{I S C}+k_{I C}}=\frac{k_{F}}{k_{0}}=k_{F} \tau_{0}$

Experimental determination of k_{F}

We saw recently that the singlet state lifetime, τ_{0}, can be obtained from a pulsed laser fluorescence decay experiment.

The lifetime so determined can be combined with the experimental fluorescence quantum yield to determine the molecule's fluorescence rate constant, k_{F}.
In a pulsed laser fluorescence experiment on liquid benzene the fluorescence intensity 150 ns after the experiment begins is 25% the intensity at the start of the experiment.

In a separate steady-state fluorescence experiment, it was determined that the fluorescence quantum yield in liquid benzene is 0.18

Determine (a) the singlet state lifetime, τ_{0} (in ns), and (b) the fluorescence rate constant, k_{F} (in s^{-1}) in liquid benzene.
(a) $\tau_{0}=110 \mathrm{~ns}$
(b) $\mathrm{k}_{\mathrm{F}}=1.7 \times 10^{6} \mathrm{~s}^{-1}$

Excited State Quenching

Earlier, we discussed that once a molecule has been excited to S_{1}, there are three mechanisms for deexcitation of the excited state.

1. Photon Absorption:
2. Fluorescence:

\rightarrow
3. Intersystem Crossing: $S_{1} \xrightarrow{k_{S C}} T_{1}$
4. Internal Conversion: $S_{1} \xrightarrow{k_{\text {cc }}} S_{0}$

An additional deexcitation mechanism is the addition of a solute, called a quencher (Q), which can induce depopulation of the excited state.

$$
S_{1}+Q \xrightarrow{k_{\varrho}} S_{0}+Q
$$

An additional mechanism is the addition of a solute, called a quencher (Q), which can induce depopulation of the excited state.

$$
S_{1}+Q \xrightarrow{k_{\varrho}} S_{0}+Q
$$

The mechanisms of excited-state quenching include:

1. Collisional deactivation
2. Resonance Energy Transfer
3. Reaction

4. Spin-orbit coupling (triplet-state quenching)

The net effects of adding a quencher are:
A. The excited state lifetime is reduced (to below τ_{0})
B. The fluorescence (or phosphorescence) quantum yield is reduced.

Below, we will develop a relation between the fluorescence yield with no quenching, $\Phi_{F, 0}$, and the quantum yield with quencher added, Φ_{F}

1. Photon Absorption:
2. Fluorescence:

3. Intersystem Crossing: $S_{1} \xrightarrow{k_{S C}} T_{1}$
4. Internal Conversion: $S_{1} \xrightarrow{k_{l C}} S_{0}$
5. Quenching:

$$
S_{1}+Q \xrightarrow{k_{\varrho}} S_{0}+Q
$$

We will use a procedure analogous to the one used earlier to obtain an expression for the fluorescence quantum yield in the presence of a quencher.
Steady-State concentration, $\left[\mathrm{S}_{1}\right]$

$$
\frac{d\left[S_{1}\right]}{d t}=0=+I_{a b s}-k_{F}\left[S_{1}\right]-k_{I S C}\left[S_{1}\right]-k_{I C}\left[S_{1}\right]-k_{Q}\left[S_{1}\right][Q]
$$

Steady-State concentration, $\left[\mathrm{S}_{1}\right]$

$$
\begin{aligned}
\frac{d\left[S_{1}\right]}{d t}=0 & =+I_{a b s}-k_{F}\left[S_{1}\right]-k_{I S C}\left[S_{1}\right]-k_{I C}\left[S_{1}\right]-k_{Q}\left[S_{1}\right][Q] \\
0 & =+I_{a b s}-\left[S_{1}\right]\left\{k_{F}+k_{I S C}+k_{I C}+k_{Q}[Q]\right\}=+I_{a b s}-\left[S_{1}\right]\left\{k_{0}+k_{Q}[Q]\right\}
\end{aligned}
$$

where $k_{0}=k_{F}+k_{I S C}+k_{I C}=\frac{1}{\tau_{0}}$
Therefore: $\quad\left[S_{1}\right]=\frac{I_{a b s}}{k_{0}+k_{Q}[Q]}$
The fluorescence quantum yield in the presence of Q is given by:
$\Phi_{F}=\frac{\text { Fluorescence Rate }}{\text { Photon Absorption Rate }}=\frac{k_{F}\left[S_{1}\right]}{I_{\text {abs }}}=\frac{k_{F}}{I_{\text {abs }}}\left(\frac{I_{a b s}}{k_{0}+k_{Q}[Q]}\right)=\frac{k_{F}}{k_{0}+k_{Q}[Q]}$

The fluorescence quantum yield in the presence of Q is given by:
$\Phi_{F}=\frac{\text { Fluorescence Rate }}{\text { Photon Absorption Rate }}=\frac{k_{F}\left[S_{1}\right]}{I_{a b s}}=\frac{k_{F}}{I_{a b s}}\left(\frac{I_{a b s}}{k_{0}+k_{Q}[Q]}\right)=\frac{k_{F}}{k_{0}+k_{Q}[Q]}$
With no quencher (i.e. $[\mathrm{Q}]=0$), the quantum yield is: $\Phi_{F, 0}=\frac{k_{F}}{k_{0}}$
Thus, we see that the presence of a molecule which can quench S_{1} reduces the fluorescence quantum yield.

The Stern-Volmer Equation

Let's calculate the ratio, $\Phi_{\mathrm{F}, 0} / \Phi_{\mathrm{F}}$:
$\frac{\Phi_{F, 0}}{\Phi_{F}}=\frac{\frac{k_{F}}{k_{0}}}{\frac{k_{F}}{k_{0}+k_{Q}[Q]}}=\frac{k_{0}+k_{Q}[Q]}{k_{0}}=1+\frac{k_{Q}[Q]}{k_{0}}=1+\tau_{0} k_{Q}[Q]$
$\frac{\Phi_{F, 0}}{\Phi_{F}}=1+\tau_{0} k_{Q}[Q]$

Stern-Volmer Equation

We see from this equation that if we measure Φ_{F} as a function of [Q], one gets a straight line with: Slope $=\tau_{0} \mathrm{k}_{\mathrm{Q}}$

If the singlet state lifetime, τ_{0}, has been measured in a pulsed laser fluorescence experiment, then

Quencher concentration, [Q] the Stern-Volmer plot may be used to determine the quenching rate constant, k_{Q}.

Laser fluorescence experiments require relatively expensive equipment, and are not available to all researchers.

A common application is to estimate k_{Q} and then use the plot to obtain a value for the singlet state lifetime, τ_{0}.

One of the methods to estimate k_{Q} is to use the theory of Diffusion Controlled Reactions (Sect. 22.2 of the text)

Example: Singlet State Lifetime from Fluorescence Quenching

The fluorescence quantum yield for 2 -aminopurine in water is 0.32 . When a quencher is added to the solution, with $[\mathrm{Q}]=0.02 \mathrm{M}$, the quantum yield is reduced to 0.14

The quenching rate constant is: $\mathrm{k}_{\mathrm{Q}}=2.5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
Calculate the singlet state lifetime of 2-aminopurine (in ns).

$$
\tau_{0}=25 \mathrm{~ns}
$$

Bimolecular Reactions from S_{1}

We commented that one mechanism by which a second molecule can quench the fluorescence of a molecule in the excited singlet state is to react with it:

$$
A\left(S_{1}\right)+B \xrightarrow{k_{R}} \operatorname{Pr} \text { od } \quad \text { or } \quad S_{1}+B \xrightarrow{k_{R}} \operatorname{Prod}
$$

The fluorescence quantum yield from S_{1} will be reduced by the presence of the second reactant, B . It is straightforward to show that the Stern-Volmer Equation becomes:

$$
\frac{\Phi_{F, 0}}{\Phi_{F}}=1+\tau_{0} k_{R}[B]
$$

Thus, if one has the measured fluorescence lifetime (in the absence of the second reactant), τ_{0}, and measures the fluorescence quantum yield as a function of $[B]$, it is straightforward to use the above equation to determine the bimolecular rate constant, k_{R},for the reaction.

The Triplet State (T_{1})

Triplet Lifetime, $\tau_{\mathrm{T} 1}$
After molecules are excited by light from S_{0} to S_{1}, some of the molecules will intersystem cross to T_{1}.
They can then return to S_{0} via two processes.

1. Phosphorescence: $\quad T_{1} \xrightarrow{k_{p}} S_{0}$
2. Intersystem Crossing: $T_{1} \xrightarrow{k_{B C}} S_{0}$

The kinetic rate equation is:

$\frac{d\left[T_{1}\right]}{d t}=-k_{P}\left[T_{1}\right]-k_{I S C}\left[T_{1}\right]=-k_{T_{1}}\left[T_{1}\right]=-\frac{1}{\tau_{\tau_{1}}}\left[T_{1}\right]$
This integrates to: $\left[T_{1}\right]=\left[T_{1}\right]_{0} e^{-k_{\bar{\hbar}} t}=\left[T_{1}\right]_{0} e^{-\frac{t}{\tau_{\bar{T}}}}$
where $\tau_{\mathrm{T} 1}$ is the triplet state lifetime, given by: $\tau_{\tau_{1}}=\frac{1}{k_{\tau_{1}}}=\frac{1}{k_{P}+k_{I S C}}$
where $\tau_{\tau 1}$ is the triplet state lifetime, given by: $\tau_{\tau_{1}}=\frac{1}{k_{T_{1}}}=\frac{1}{k_{P}+k_{I S C}}$
Because the $T_{1} \rightarrow S_{0}$ transition is spin-forbidden, triplet state lifetimes, $\tau_{T 1}$, are generally many orders of magnitude longer than singlet lifetimes, τ_{0}

Typical Singlet State Lifetimes: $\tau_{0} \approx 1-100 \mathrm{~ns}$
Typical Triplet State Lifetimes: $\tau_{\mathrm{T} 1} \approx 1 \mathrm{~ms}$ - days

Phosphorescence in Liquid Solution

This is a short section. Phosphorescence is virtually never observed in liquid phase solutions.

This is because triplet state lifetimes are so long that deexcitation by collisions with solvent molecules will depopulate T_{1} very efficiently, completely quenching the phosphorescence.

However, one does observe phosphorescence from molecules in the gas phase and in frozen glasses at 77 K .

Enzyme Kinetics: Introduction

- Enzymes are proteins
- Enzymes are highly efficient catalysts; up to 10^{6} increase in rate
- Enzymes are highly specific catalysts; i.e. they have high selectivity
- The reactants are called "Substrates" [S]
- The rate of an enzyme catalyzed reaction is called the "velocity" [v]
- The "active site" of the enzyme (which binds the substrate) is only a few amino acid residues; the remainder of the protein provides the three dimensional structure

Observed Rate Law: $v=k^{\prime}\left[E_{o}\right][S] \quad$ at low $[S]$
$v=k "\left[E_{0}\right] \quad$ at high $[S]$
(independent of [S])
[E_{o}] is the initial enzyme concentration.

Michaelis-Menten Mechanism (1913)

Extended by Briggs-Haldane (1925)

$$
\mathrm{E}+\mathrm{S} \underset{\mathbf{k}_{-1}}{\stackrel{\mathbf{k}_{1}}{\rightleftarrows}} \mathrm{ES} \quad \text { followed by } \quad \mathrm{ES} \underset{\mathbf{k}_{-2}}{\stackrel{\mathbf{k}_{2}}{\rightleftarrows}} \mathrm{E}+\mathrm{P}
$$

The k_{-2} step, which converts P back to the intermediate,, complicates the experimental kinetics and the derived rate law.

To avoid this complication, one measures only the initial rates, for the first $3 \%-5 \%$ of the reaction, in which case one may ignore the k_{-2} step.

$$
v_{0}=(\Delta[P] / \Delta t)_{\text {init }}
$$

$$
\begin{aligned}
& \mathrm{E}+\mathrm{S} \underset{\mathbf{k}_{-1}}{\stackrel{\mathbf{k}_{1}}{\rightleftarrows}} \mathrm{ES} \xrightarrow{\stackrel{\mathbf{k}_{2}}{\longrightarrow}} \mathrm{E}+\mathrm{P} \\
& \mathrm{~V}_{\mathrm{o}}=\mathrm{k}_{2}[\mathrm{ES}]=\frac{\mathrm{k}_{2}[\mathrm{E}]_{0}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{M}}+[\mathrm{S}]} \quad K_{M}=\frac{\mathrm{k}_{-1}+\mathrm{k}_{2}}{\mathrm{k}_{1}}
\end{aligned}
$$

SS on [ES]: $\quad \Delta[E S] / \Delta t=0=+k_{1}[E][S]-k_{-1}[E S]-k_{2}[E S]$

$$
\begin{aligned}
& 0=+\mathrm{k}_{1}\left\{[\mathrm{E}]_{0}-[\mathrm{ES}]\right\}[\mathrm{S}]-\mathrm{k}_{-1}[\mathrm{ES}]-\mathrm{k}_{2}[\mathrm{ES}] \\
& 0\left.=+\mathrm{k}_{1}[\mathrm{E}]_{0} \mathrm{SS}\right]-\left\{\mathrm{k}_{-1}+\mathrm{k}_{2}+\mathrm{k}_{1}[\mathrm{~S}]\right\}[\mathrm{ES}] \\
&\left\{\mathrm{k}_{-1}+\mathrm{k}_{2}+\mathrm{k}_{1}[\mathrm{~S}]\right\}[\mathrm{ES}]=+\mathrm{k}_{1}[\mathrm{E}]_{0}[\mathrm{~S}] \\
& {[\mathrm{ES}]=\frac{\mathrm{k}_{1}[\mathrm{E}]_{0}[\mathrm{~S}]}{\mathrm{k}_{-1}+\mathrm{k}_{2}+\mathrm{k}_{1}[\mathrm{~S}]}=\frac{[\mathrm{E}]_{0}[\mathrm{~S}]}{\frac{\mathrm{k}_{-1}+\mathrm{k}_{2}}{\mathrm{k}_{1}}+[\mathrm{S}]}=\frac{[\mathrm{E}]_{[}[\mathrm{S}]}{\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]} \quad \begin{array}{c}
\text { Michaelis Constant } \\
K_{M}=\frac{\mathrm{k}_{-1}+\mathrm{k}_{2}}{\mathrm{k}_{1}}
\end{array} }
\end{aligned}
$$

Better to determine $[E S]$ in terms of $[E]_{o}$ than $[E]$

$$
[E]_{0}=[E]+[E S] \longrightarrow[E]=[E]_{0}-[E S]
$$

$$
\begin{aligned}
& v_{o}=\frac{\mathrm{k}_{2}[E]_{0}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{M}}+[\mathrm{S}]} \quad \mathrm{K}_{\mathrm{M}}=\frac{\mathrm{k}_{-1}+\mathrm{k}_{2}}{\mathrm{k}_{1}} \\
& \text { OR } \quad v_{o}=\frac{\mathrm{V}_{\mathrm{m}}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]} \quad \mathrm{V}_{\mathrm{m}}=\mathrm{k}_{2}[\mathrm{E}]_{\mathrm{o}}=\text { maximum velocity }
\end{aligned}
$$

Limiting Cases

Low $[S] \quad v_{0}=\frac{k_{2}}{K_{M}}[E]_{0}[S] \quad$ For fixed $[E]_{0}, v_{0} \propto[S]$
High [S] $\mathrm{v}_{\mathrm{o}}=\mathrm{k}_{2}[E]_{0}=\mathrm{V}_{\mathrm{m}} \quad$ For fixed $[E]_{0}, \mathrm{v}_{\mathrm{o}}$ is constant
V_{m} is the maximum velocity
$[\mathbf{S}]=\mathbf{K}_{M} \quad V_{o}=\frac{V_{m} K_{M}}{\mathrm{~K}_{\mathrm{M}}+\mathrm{K}_{\mathrm{M}}}=\frac{\mathrm{V}_{\mathrm{M}}}{2}$

Interpretation of Parameters

\mathbf{V}_{m} : Maximum Velocity

$k_{2}=V_{m} /[E]_{\circ} \quad k_{2}$ is the "turnover number".
This represents the moles of Product produced per unit time per mole of Enzyme.

Units: 1 /time; e.g. s^{-1}
K_{M} : Michaelis Constant

$$
\begin{aligned}
& K_{M}=\frac{\mathrm{k}_{-1}+\mathrm{k}_{2}}{\mathrm{k}_{1}} \approx \frac{\mathrm{k}_{-1}}{\mathrm{k}_{1}} \approx K_{\text {Diss }} \mathrm{E}+\mathrm{S} \stackrel{\underset{\mathrm{k}_{2} \ll \mathrm{k}_{-1}}{\stackrel{\mathbf{k}_{1}}{\rightleftarrows}} \mathrm{ES}}{\stackrel{\mathbf{k}_{-1}}{\rightleftarrows}} \mathrm{KS} \\
& K_{M} \approx K_{\text {Diss }}=\frac{\mathrm{k}_{-1}}{\mathrm{k}_{1}}
\end{aligned}
$$

Units: time $e^{-1} /$ time $^{-1} \cdot \mathrm{M}^{-1}=\mathrm{M}$
Small K_{M} : Strong Binding
Large K_{M} : Weak Binding

"Practical" Interpretation of K_{M}

$$
v_{o}=\frac{\mathrm{V}_{\mathrm{m}}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{M}}+[\mathrm{S}]}
$$

$$
\begin{array}{rll}
{[\mathrm{S}]} & \mathbf{v}_{\mathrm{o}} & \\
0.5 \cdot \mathrm{~K}_{\mathrm{M}} & 0.33 \cdot \mathrm{~V}_{\mathrm{m}} & \\
1 \cdot \mathrm{~K}_{\mathrm{M}} & 0.50 \cdot \mathrm{~V}_{\mathrm{m}} \longleftarrow & \begin{array}{l}
\mathbf{5 0 \%} \text { of max. activity } \\
\text { at }[\mathrm{S}]=\mathrm{K}_{\mathrm{M}}
\end{array} \\
5 \cdot \mathrm{~K}_{\mathrm{M}} & 0.83 \cdot \mathrm{~V}_{\mathrm{m}} & \\
10 \cdot \mathrm{~K}_{\mathrm{M}} & 0.91 \cdot \mathrm{~V}_{\mathrm{m}} \longleftarrow & \begin{array}{l}
\mathbf{9 0 \%} \text { of max. activity } \\
50 \cdot \mathrm{~K}_{\mathrm{M}}
\end{array} \\
0.98 \cdot \mathrm{~V}_{\mathrm{m}} & \text { at }[\mathrm{S}]=10 \cdot \mathrm{~K}_{\mathrm{m}}
\end{array}
$$

Determination of the Michaelis-Menten Parameters

$$
v_{o}=\frac{\mathrm{V}_{\mathrm{m}}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]}
$$

As: $[\mathrm{S}] \rightarrow 0, \mathrm{v}_{\mathrm{o}} \rightarrow 0$
$[S] \rightarrow \infty, \mathrm{v}_{\mathrm{o}} \rightarrow \mathrm{V}_{\mathrm{m}}$
At: $[\mathrm{S}]=\mathrm{K}_{\mathrm{M}}, \mathrm{v}_{\mathrm{o}}=\mathrm{V}_{\mathrm{m}} / 2$

This method is inaccurate !!

The Lineweaver-Burk (Double Reciprocal) Plot

$$
v_{o}=\frac{\mathrm{V}_{\mathrm{m}}[\mathrm{~S}]}{\mathrm{K}_{\mathrm{M}}+[\mathrm{S}]}
$$

$$
\frac{1}{\mathrm{~V}_{0}}=\frac{\mathrm{K}_{\mathrm{M}}+[\mathrm{S}]}{V_{m}[\mathrm{~S}]}=\frac{K_{M}}{V_{m}[\mathrm{~S}]}+\frac{[\mathrm{S}]}{V_{m}[\mathrm{~S}]}
$$

$$
\frac{1}{\mathrm{~V}_{\mathrm{o}}}=\frac{\mathrm{K}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{m}}} \frac{1}{[\mathrm{~S}]}+\frac{1}{\mathrm{~V}_{\mathrm{m}}}
$$

Lineweaver-Burk Equation

This is the equation of a straight line:

$$
y=m \cdot x+b
$$

