
THE SECOND LAW 

Chapter 3 Outline 
 
HW: Questions are below.  Solutions are in separate file on the course web site. 
 
 
Sect.        Title and Comments                                                            Required? 
 

1. The Dispersal of Energy YES 
 
2. Entropy YES 

We won’t be covering the Boltzmann Formula (Sect. 2.b). 
 
3. Entropy Changes Accompanying Specific Processes YES 

The text concentrates on reversible processes only.  We will also show 
the calculation of entropy changes for irreversible processes. 

 
4. The Third Law of Thermodynamics YES 
 
5. The Helmholtz and Gibbs Energies YES 

We will just comment briefly on the relation of ∆A to maximum work 
and of ∆G to non-PV work (Sects. 3.5.c and 3.5.d).  You are not 
responsible for this. 

 
6. Standard Reaction Gibbs Energies YES 
 
7. The Fundamental Equation YES 
  We will add additional examples of applications of the thermodynamic equations,  
  which are not in the text.  We will also show how one can calculate  
  thermodynamic properties of systems with non-PV work. 
 
8. Properties of the Internal Energy YES 
 
9. Property of the Gibbs Energy YES 
 
 



Chapter 3  Homework Questions 

 
3.1 Calculate ∆S (for the system) when the state of 3. moles of a perfect gas at 25 oC and 1. atm is 

changed to 125 oC and 5. atm.  
 Note:  The constant pressure molar heat capacity of this gas is Cp,m = (5/2)R,   
 
3.2 A sample consisting of 3. moles of a diatomic perfect gas at -73 oC is compressed reversibly and 

adiabically until the temperature reaches -23. oC.  For this gas, CV,m = 27.5 J/mol•K.  Calculate 
q, w, ∆U, ∆H and ∆S for this process. 

 
3.3 Calculate the changes in entropy of the system and the surroundings when a 14. g sample of 

N2(g) [M=28] at 1. bar and 25 oC doubles its volume in 
 (a)  a reversible isothermal expansion 
 (b)  an irreversible isothermal expansion against pex = 0. 
 (c)  a reversible adiabatic expansion 
 
 
3.4 The enthalpy of vaporization of chloroform (CHCl3, M=119.4) is 29.4 kJ/mol at its normal 

boiling point of 62 oC.  For the vaporization of 240. grams of CHCl3 at its normal boiling point, 
calculate (a) ∆S of the system and (b)  ∆S of the surroundings. 

 
3.5 The normal boiling point of ethanol, C2H5OH [M=46], is 78 oC.  The Enthalpy of Vaporization 

of ethanol is 38.6 kJ/mol. 
 
 Calculate q, w, ∆U, ∆H and ∆S when 150 grams of ethanol vapor is condensed to the liquid at 

78 oC and 1 bar pressure. 
 
 
3.6 The normal melting point of ethanol, C2H5OH [M=46], is -114 oC.  The Enthalpy of Fusion of 

ethanol is 9.45 kJ/mol. 
 
 Calculate q, w, ∆U, ∆H and ∆S when 150 grams of ethanol liquid crystallizes to the solid at 

 -114 oC and 1 bar pressure. 
 
3.7 The normal boiling point of benzene is 80 oC = 353 K.  The enthalpy of vaporization of benzene 

at its normal boiling point is ∆vapH = 35.7 kJ/mol.  The constant pressure molar heat capacities 
of the liquid and vapor are:  Cp,m(l) = 138.7 J/mol-K and Cp,m(g) = 35.1 J/mol-K 

 
 Consider the vaporization of one mole of superheated benzene at 100 oC.  Calculate ∆Ssys, 

∆Ssurr, and ∆Suniv for this process. 
 
 
 
 
 
 
 



3.8 The standard molar entropy of NH3(g) is 192.45 J/mol•K at 25 oC.  The constant pressure heat 
capacity is temperature dependent and is given by: 

 , 2p m
cC a bT

T
= + +     a = 29.8   ,  b = 2.5x10-2  ,  c = -1.6x105 

 Calculate the entropy of 3. moles of NH3(g) at: 
 (a)  100 oC 
 (b)  500 oC 
 
3.9 The constant pressure heat capacity of F2(g) is temperature dependent and given by: 
  
         a = 39.6 J/mol-K  and  b = 2.5x103 J/mol 
 
 Consider 100 grams of F2(g) [M = 38.] initially at a pressure of 2. bar and temperature of 

600 oC.  Calculate q, w, ∆U, ∆H, ∆S for each of the following processes. 
 
 (a)  The gas is cooled to 300 oC at constant pressure. 
 (b)  The gas is cooled to 300 oC at constant volume 
  
3.10 Use the standard molar entropies (at 298 K) in the table below to calculate the reaction 

entropies, ∆rSo, for the following reactions. 
 (a)  2 CH3CHO(g) + O2(g)  → 2 CH3COOH(l) 
 (b)  Hg(l) + Cl2(g) → HgCl2(s). 
 
 Compound Sm

o 
 CH3CHO(g) 250.3 J/mol•K 
 O2(g)  205.1 
 CH3COOH(l) 159.8 
 Hg(l)  76.0 
 Cl2(g) 223.1 
 HgCl2(s) 146.0 
 
 
3.11 Use the standard Gibbs Energies of Formation (at 298 K) in the table below to calculate the 

reaction entropies, ∆rSo, for the following reactions. 
 (a)  2 CH3CHO(g) + O2(g)  → 2 CH3COOH(l) 
 (b)  Hg(l) + Cl2(g) → HgCl2(s). 
 

 Compound ∆fGm
o 

 CH3CHO(g) -128.9 kJ/mol 
 CH3COOH(l) -389.9 
 HgCl2(s) -178.6 
 
 
 
 
 
 

, = −p m
bC a
T



3.12 Use the standard molar entropies and the enthalpies of formation in the table below to calculate 
the standard Gibbs energy change (at 298 K) for the reaction: 

 4 HCl(g) + O2(g) → Cl2(g) + 2 H2O(l) 
 

 Compound   Sm
o
      ∆fHm

o  
 HCl(g) 186.9  J/mol•K -92.3  kJ/mol 
 O2(g)  205.1   
 Cl2(g)  69.9    
 H2O(l) 223.1  -285.8 
 
 
3.13 Consider 70. grams of N2(g) [M=28] initially at 40 oC and 25 L.  The gas is compressed 

isothermally to a final volume of 500 mL.  Calculate ∆G for this process. 
 
3.14 The change in the Gibbs Energy for a certain constant pressure process is given by: 
 2G a bT∆ = +  , a = +5620 J , b = 8.0x10-2 J/K2. 

 Calculate ∆S for this process at 30 oC (in J/K) 
 
3.15 Calculate the change in Gibbs Energy (in J) of 20. moles of liquid benzene 

(C6H6, M = 78 g/mol, d = 0.88 g/mL) when the pressure on the sample is increased from 1.0 atm 
to 100 atm. 

 
3.16 Calculate the change in Gibbs Energy (in J) of 20. moles of H2(g)  when the pressure on the 

sample is increased from 1.0 atm to 100 atm at 25 oC. 
 
3.17 A solid has two crystalline forms, A(s) and B(s).  For the transition  A(s) → B(s), ∆Go= +6.0 

kJ/mol (i.e. at 1 bar pressure).  The difference in molar volumes of the two forms is                 
 Vm(B) - Vm(A) = ∆Vm = -15 mL/mol. 

 Calculate the pressure, in bar, at which the two forms will be in equilibrium. 
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Hot Bar Cold Bar Mid-temperature 
Bars

Room

25 oC

Ice Cube
0 oC

Room

24.9 oC

Puddle of water
24.9 oC

3

Spontaneous Processes

4

Observations

• All four processes are spontaneous only in the
direction shown (left to right)

• The First Law (energy conservation) is obeyed
regardless of the direction

• The disorder (randomness) increases in the 
spontaneous direction.

Conclusion:  In order to predict the direction in which
a process is spontaneous, we require
a function which is a measure of the
amount of disorder and energy dispersal.

• A dispersal of energy accompanies the process.
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Heat Engines

1. Removes heat from a high temperature source (Th)

2. Performs work on the surroundings       

3. Expels the remaining heat into a cold temperature
sink (Tc)

A Heat Engine:

In the next section, we will analyze an idealized engine, called
the Carnot Engine (or Carnot Cycle).

We will use the Carnot Cycle to:

(a) Develop an expression for the maximum efficiency of a heat engine

(b) Introduce Entropy (S) as a State Function (needed to characterize
spontaneous processes)

The Carnot Cycle (Reversible)

Th Th
Insulator Tc

Insulator

6

1.  Rev. Isothermal Expansion from VA to VB

2.  Rev. Adiabatic Expansion from VB to VC

3.  Rev. Isothermal Compression from VC to VD

4.  Rev. Adiabatic Compression from VD to VA

System: 1 mole of Perfect Gas

A B C D A

qh removed from 
reservoir Th

qc discharged into 
reservoir Th Tc
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1.  Rev. Isothermal Expansion from VA to VB (T = Th)

2.  Rev. Adiabatic Expansion from VB to VC (Th  Tc)

3.  Rev. Isothermal Compression from VC to VD (T = Tc)

4.  Rev. Adiabatic Compression from VD to VA (Tc  Th)

8

Timeout:  Relation of  VD/VC to VB/VA

Steps 2 and 4 are adiabatic.  In Chapter 2, we learned
that, for an adiabatic expansion or compression:

Step 2:  VB  VC and Th  Tc:

or

Step 4:  VD  VA and Tc  Th:

Therefore:
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Totals around the Cycle

Internal Energy

Expected for a State Function

Work

Not surprising that wtot  0 because w is not a State Function

10

Totals around the Cycle

Heat

Not surprising that qtot  0 because q is not a State Function

However, note that:

Expected because:  qtot + wtot = Utot = 0
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Thermodynamic Efficiency of the Carnot Cycle (Engine)

The idealized Carnot Cycle is similar to real heat
engines in that it:

1. Removes heat from a high temperature source (Th)
(qh = q1 in the Isothermal Expansion at Th)

2. Performs work on the surroundings
(Work performed is -wtot)

3. Expels the remaining heat into a cold temperature
sink (qc = q3 in the Isothermal Compression at Tc)

The Thermodynamic Efficiency () is defined as:

12

Since qtot + wtot = 0

The ratio of heats can be related to the temperatures of the two reservoirs.

Therefore:

Thus, the efficiency of a Carnot engine is:



7

13

Although this result was derived for the idealized Carnot cycle, it can be
proven that the efficiency of all reversible engines are the same.

(The explanation is given in the text, but you are not responsible for it)

Notes:

The efficiency of a real (i.e. irreversible) engine is lower than 
for reversible engines.

 = 1 ??

It is obvious from the expression that the only way one can achieve 
perfect efficiency is if either:

(a)  Th = .     Obviously not possible.

(b)  Tc = 0 K.  The Third Law of Thermodynamics is that one cannot reach 0 K

Thus, one of the statements of the Second Law of Thermodynamics
(due to Lord Kelvin) is that the efficiency of an engine cannot be unity;
i.e. it is not possible to convert 100% of the heat taken from a thermal reservoir 
to useful work.

14

Refrigeration

If a heat engine is operated in reverse, it becomes a refrigerator.

Reverse all steps
Tc

Th

wtot

qh

qc

Coefficient of Performance (c)
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Refrigeration

Coefficient of Performance (c)

Remember that we showed:

Therefore:

A "perfect" refrigerator would have c 

For a Carnot refrigerator with Th = 298 K and Tc = 273 K,
c = 11.

Real refrigerators would have a lower coefficient of performance

16

Entropy (S):  A new State Function

The definition of a State Function is that its cyclic integral vanishes.

For the Carnot Cycle, we saw that:

Not surprising because q is not a State Function

However, let's consider summing qi/Ti

So: for the Carnot Cycle
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So: for the Carnot Cycvle

Using this result for the Carnot Cycle, it
can be shown that: 

for any reversible cycle

and in the limiting case:

This permits us to define a new State Function Entropy (S) by its differential:

It is critically important to note that if a process is irreversible, one cannot
use the above expression to compute the entropy change.

As a matter of fact, it can be shown that: 

i.e. if you use the formula incorrectly (i.e. for an irreversible process,
the only thing you will know is that your answer is too low,
but not by how much.

18

It is critically important to note that if a process is irreversible, one cannot
use the above expression to compute the entropy change.

As a matter of fact, it can be shown that: 

i.e. if you use the formula incorrectly (i.e. for an irreversible process,
the only thing you will know is that your answer is too low,
but not by how much.

i.e. S is a State Function, but its change can be calculated from the defining
formula only if the process is reversible

However, if one can devise a reversible path to go from the same initial to 
the same final state, then the entropy change can be calculated from the formula:



10

System

qrev

T

Units

S:   J/K

Sm: J/mol-K

S  qrev

S  1 / T

If qrev< 0, S < 0

Trends

19

General Isothermal

Interpretation of S

S is a measure of the amount of increase OR decrease in the degree of
disorder (randomness)** during a process.

**Some texts refers to this as "energy dispersal", which is basically the
same thing. 

20

The Second Law of Thermodynamics

Statement #1:  Kelvin

It is impossible to convert heat completely into work in a cyclic process.
i.e.  The efficiency of a heat engine must be less than 1.

Statement #2:  Clausius

Heat cannot flow spontaneously from a lower temperature material to a 
higher temperature material.
i.e.  The Coefficient of Performance of a refrigerator must be finite:

Statement #3:  Entropy

The entropy of an isolated system increases in the course of a
spontaneous change.

Note that the Universe is an "isolated system"
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“The entropy of the Universe always increases.”

System

Surroundings

q

The Universe

Suniv = Ssys + Ssurr > 0

Suniv = Ssys + Ssurr = 0

Spontaneous (Irreversible)
Processes

Reversible (Equilibrium)
Processes

Suniv = Ssys + Ssurr  0

Spont.

Rev.

Heat exchange between the system
and surroundings induces entropy
changes in both the system (Ssys)
and the surroundings (Ssurr).

21
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Entropy Changes in Some Reversible Processes

We will first calculate the entropy changes of the system and surroundings
Ssys and Ssurr for some reversible processes.

Reversible Isothermal Expansion (or Compression) of a Perfect Gas

V1 V2

T=constant
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System

Surroundings

Universe

Expansion (V2 > V1)

Ssys > 0   

Ssurr < 0 

Compression (V2 < V1)

Ssys < 0   

Ssurr > 0 

24

Reversible Adiabatic Expansion (or Compression) of a Perfect Gas

dqsys = dq = 0 

V1
V2

Expansion

U = nCV,m T = w < 0.  Therefore, T < 0

Spatial disorder increases, but thermal order decreases

Compression

U = nCV,m T = w > 0.  Therefore, T > 0

Spatial disorder decreases, but thermal order increases
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Reversible Phase Transitions

Pex

liquid

Pex

gas

q

One example is vaporization (right).
One can also have:
2. condensation
3. fusion (melting)
4. crystallization (freezing)
5. sublimation
6. deposition

Phase transitions (trs in text) occur at constant pressure and temperature

System Surroundings

Universe

26

Example: Calculate the entropy changes of the system and surroundings 
(in J/K) when 195 g of Benzene vapor condenses to the liquid 
at its normal boiling point.

M(C6 H6) = 78 g/mol
vapH = 30.8 kJ/mol
Tb = 80 oC

Ssys = -218 J/K 
Ssurr = +218 J/K 



14

27

Homework: Calculate the entropy changes of the system and surroundings 
(in J/K) when 36 g of H2O(s) melts at 0 oC.

M(H2O) = 18 g/mol
fusH = 6.01 kJ/mol

Ssys = +44.0 J/K 
Ssurr = -44.0 J/K 

Compound     Tb vapH
[K]       [kJ/mol]

H2O               373          40.7

CH3OH          337          35.3

C6H6 353          30.8

CCl4 350          30.1

C10H8 491          40.5

(C2H5)2O        308          26.0

H2S                213          18.7

CH4 112           8.2

vapS
[J/mol-K]

109.1

104.7

87.3

86.0

82.5

84.4

87.8

73.2

 85 J/mol-K

High

Low

Trouton's Rule

28

According to Trouton's Rule, the entropy of vaporization of a substance
is approximately:  vapS  85 J/mol-K at its normal boiling point.
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Trouton's Rule can be used to provide an estimate of the Enthalpy of 
Vaporization of a substance.

Example:  The normal boiling point of  Br2(l) is 59 oC

Use Trouton's Rule to estimate the Enthalpy of /Vaporization
of Br2.

vapH(Est.)   = 28.2 kJ/mol

vapH(Exp.) = 29.5 kJ/mol

30

Reversible Heating or Cooling (at constant P or V)

Constant Pressure

System

if Cp,m is constant 

Surroundings dqsurr = - dqp

Therefore:

if Cp,m is constant 

Heating (T2 > T1)

Ssys > 0   

Ssurr < 0 

Cooling (T2 < T1)

Ssys < 0   

Ssurr > 0 
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Reversible Heating or Cooling (at constant P or V)

Constant Volume

System

if CV,m is constant 

Surroundings dqsurr = - dqV

Therefore:

if CV,m is constant 

The treatment and results are the same except that Cp,m is replaced by CV,m.

32

Example: The heat capacity of acetone vapor is temperature dependent

and is given by: a = 182 J/mol-K

b = 3.6x104 J/mol

Calculate the entropy change of the system and surroundings when
two moles of acetone vapor is heated from 100 oC to 400 oC
at constant pressure.    

Ssys = +129 J/K

Ssurr = -129 J/K
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Example: 2 moles of Ar(g) is initially at 25 oC in a 10 L container.
Calculate S (=Ssys) if the gas is simultaneously heated to 100 oC
and compressed to 5 L.

R = 8.31 J/mol-K
CV,m = (3/2)R = 12.5 J/mol-K 

Consider this to be a 2 step process:  1.  Heat at constant volume to 100 oC
2.  Compress to 5 L

1.  Heating at constant volume from T1 = 298 K to T2 = 373 K

2.  Compression at constant temperature from V1 = 10 L to V2 = 5 L

S = S1 + S2 = +5.6 - 11.5 = -5.9 J/K 

34

Entropy Changes in Irreversible Processes

Irreversible Adiabatic Expansion into Vacuum

V1

Insulated

V2

Insulated

Adiabatic:  dqsys = dqsurr =0 

Surroundings

System We cannot use the heat for this irreversible process to
calculate Ssurr .

We must devise an equivalent reversible process to
accomplish the same change.
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Irreversible Adiabatic Expansion into Vacuum

V1

Insulated

V2

Insulated

System:  Reversible Path

q = 0
w = 0
Therefore:  U = nCV,mT = 0 T = constant

The initial and final states of the irreversible adiabatic expansion into
vacuum are the same as for a reversible isothermal expansion from V1 to V2

Universe

Suniv > 0 for a spontaneous (irrev.) process

36

The Freezing of Supercooled Water

Data
Cp,m(liq) = 75.3 J/mol-K
Cp,m (sol) = 37.7 J/mol-K
fusH(273 K) = +6010 J/mol

Calculate Ssys , Ssurr and Suniv when 1 mole of liquid water freezes at
-10 oC (=263 K)  

System

We need a reversible path:

Rev 1

H2O(l), 263 K

H2O(l), 273 K

H2O(s), 263 K

H2O(s), 273 K

Ssys

Rev 2

Rev 3

Ssys = S1 + S2 + S3
In Class

Ssys = -20.6 J/mol-K 
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The Freezing of Supercooled Water

Data
Cp,m(liq) = 75.3 J/mol-K
Cp,m (sol) = 37.7 J/mol-K
fusH(273 K) = +6010 J/mol

Calculate Ssys , Ssurr and Suniv when 1 mole of liquid water freezes at
-10 oC (=263 K)  

Surroundings

Seems pretty simple from here.  However, we need the transition H at
263 K, not 273 K.

crysH(263 K) = -5634 J/mol
In class

Suniv > 0 for a spontaneous (irrev.) process

Universe

38

The Boiling of Superheated Benzene

Data
Tb = 80 oC = 353 K  
Cp,m(liq) =  138.7 J/mol-K
Cp,m (gas) = 35.1 J/mol-K
vapH(353 K) = +35.7 kJ/mol

Homework: Calculate Ssys , Ssurr and Suniv for the vaporization of 
one mole of liquid Benzene at 100 oC   

Ssys = + 95.4 J/mol-K

Ssurr = -90.2 J/mol-K

Suniv = + 5.2 J/mol-K    

Note: For the calculation of Ssurr, we first computed that
vapH(373) = +33,630 J/mol

This is Homework #3.7.  The complete solution is given with the 
other homework solutions on the course web site.



20

Amorphous
Solids

CO
OC
CO
OC

OC
CO
CO
OC

CO
OC
OC
CO

Disordered
Crystals

The entropies of all pure crystalline materials 
at T = 0 K are zero.

Sm
o(0 K) = 0

Exceptions

i.e. there is no disorder in a pure crystal at
absolute zero.

The Third Law of Thermodynamics

39

Importance of the Third Law

The Third Law permits us to compute absolute entropies
of substances at any arbitrary temperature (usually 25 oC)

These calculated entropies are tabulated and can be used
to determine entropy changes for reactions.

Sm
o(T) - Sm(0 K) = Sm

o(T)

=

0

40
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The Determination of Third Law Entropies

Problem: difficult to measure Cp near T = 0.  In practice we do an extrapolation.
At low T we find that the expression Cp = aT 3 works well. (Debye Extrapolation)

41

=

0

Reactants  Products

rSo = nProdSm
o(Prod) - nRctSm

o(Rct) 

A + 3B  2C + D

rS = [2•Sm
o(C) + Sm

o(D)] - [Sm
o(A) + 3•Sm

o(B)]

NOTE:  Sm
o  0 for elements

(unlike fHo)

Entropy Changes in Chemical Reactions

42
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Example:  Use standard molar entropies to calculaterSo

for the reaction, N2(g) + 3H2(g)  2NH3(g). Cmpd.   Sm
o

N2(g)      191.6 J/mol-K

H2(g)      130.7

NH3(g)    192.5

Note that rSo << 0:        4 mol gas  2 mol gas

43
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The Temperature Dependence of Reaction Entropies

In Chapter 2, we developed an expression (Kirchoff's Law) to determine the
reaction enthalpy at a second temperature, rH(T2)  if we knew rH(T1): 

The same method can be used to determine an expression for the the temperature
dependence of reaction entropies:

where:

Note: If the heat capacities of reactants and products can be taken as 
approximately constant, then the above equation simplifies to:

You are NOT responsible for the temperature dependence
of S.  I will just comment on it briefly
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Consider the combustion of hydrogen:  2 H2(g) + O2(g)   2H2O(l)        

For this reaction at 298 K (=25 oC), the reaction entropy is:
rH(298 K) = -326.7 kJ  

Calculate the reaction entropy at 373 K (=100 oC). 

Species      Cp,m

H2(g)          33.6 J/mol-K 

O2(g)          29.4

H2O(l)        75.3

46

Concentrating on the System

We've learned that the Second Law of Thermodynamics can be utilized to
ascertain whether a process is spontaneous (irreversible) or reversible
(at equilibrium).

Suniv = Ssys + Ssurr  0

Spont.

Rev.

However, we are usually interested primarily in the system, and not 
the surroundings.

It would be convenient to have criteria for spontaneity that depend solely upon
system variables.

Actually, we do have system variables which can determine whether a process
is spontaneous under two sets of specific conditions, both of which 
are very common.

1.  The Gibbs Energy:         G  H - TS  Constant Temperature and Pressure

2.  The Helmholtz Energy:  A  U - TS Constant Temperature and Volume
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T = Constant   

P = Constant Suniv = Ssys + Ssurr  0

Spont.

Rev.

Ssys + qsurr/T  0Constant T

Ssys - qsys/T  0

Constant P Ssys - Hsys/T  0

TS - H  0

H - TS  0

Spont.

Rev.

The Gibbs Energy (G)

47

H - TS  0

Spont.

Rev.

Define:    G  H - TS

G = H - (TS)

G = H - TS

Therefore:    G  0

Spont.

Rev.

If G > 0, the process is spontaneous in the reverse direction.

48
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T = Constant   

V = Constant Suniv = Ssys + Ssurr  0

Spont.

Rev.

Ssys + qsurr/T  0Constant T

Ssys - qsys/T  0

Constant V Ssys - Usys/T  0

TS - U  0

U - TS  0

Spont.

Rev.

The Helmholtz Energy (A)

49

Difference from G

Difference from G

U - TS  0

Spont.

Rev.

Define:    A  U - TS

A = U - (TS)

A = U - TS

Therefore:    A  0

Spont.

Rev.

If A > 0, the process is spontaneous in the reverse direction.
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Difference from G
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The Helmholtz Energy and Maximum Work 

It can be shown (Sect. 3.5c) that the maximum work is related to A by:

Maximum work that can be performed by system:

-wmax = -A 

The material below is FYI.  You are not responsible for it.

The Gibbs Energy and Maximum non-Expansion Work 

It can be shown (Sect. 3.5c) that the maximum non-expansion work
(i.e. non-PV work) is related to G by:

Maximum non-expansion work that can be performed by system:

(-wmax)non-PV = -G

G = H - TS

H    S   G

+- - Spontaneous at all temperatures

+ - Not Spontaneous at any temperature+

+ +
- Spontaneous at high temperature

Entropically driven reaction

Not Spontaneous at low temperature+

- -
- Spontaneous at low temperature

Enthalpically driven reaction

Not Spontaneous at high temperature+

Factors Influencing Spontaneity (const T and p)

52
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Standard Reaction Gibbs Energies

Reactants  Products

One method to calculate Go for a reactions is:

(1) Calculate Ho from values of fHo (Enthalpies of Formation)

(2) Calculate So from values of Sm
o (Absolute Entropies)

(3) Calculate Go = Ho - TSo

A second, direct, method is to use Gibbs Energies of Formation.

This method is closely analogous to the use of Enthalpies of Formation
to determine reaction enthalpies (Chapter 2).

54

Gibbs Energy of Formation

The Gibbs Energy of Formation (fGo) of a compound is the Gibbs energy to form
one mole of the compound from the elements in their standard state; e.g.

H2(g) + ½ O2(g)  H2O(l) fGo = -237.1 kJ/mol

The Gibbs Energy change for a reaction is then given by:
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Use the data in the table to calculate Go for the reaction

C6H12O6(s) + 6 O2(g)   6CO2(g) + 6H2O(l) Compound     fGo

C6H12O6 -908.9 kJ/mol

CO2 -394.4

H2O               -237.1
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Combining the First and Second Laws

Preliminary:  Exact Differentials and Maxwell Relations

We have a number of State Functions in Thermodynamics, including 
U, H, S, A and G.

Earlier we learned that the differential of a State Function is an
exact differential.

Now we will introduce a mathematical relation between the partial derivatives
of exact differentials.  Consider the total differential of a State Function z = z(x,y):

A mathematical property of State Functions with exact differentials is that
the values of the "mixed" partial derivatives is independent of the order of
differentiation; i.e.

or
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The Fundamental Equation

The First Law of Thermodynamics (in differential form) is:

Assuming (1)  reversible processes, (2) only PV work, and (3) a closed system,
one has:

and

Therefore:

Using

One can write a Maxwell relation from dU:

Note: This Maxwell Relation is not as useful as a couple of others
coming up.

58

Expressions for dH, dA and dG + corresponding Maxwell Relations

Internal Energy (U)

Enthalpy (H)

Also not particularly useful, but
hang in there.
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Expressions for dH, dA and dG + related Maxwell Relations

Helmholtz Energy (A)

Gibbs Energy (G)

This Maxwell Relation is
very useful

In class

In class

So is this one

In class

In class

Suggestion: It is far easier to learn how to "derive" the above equations
than to try to memorize all of them.
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Applications of the Equations

The Dependence of Internal Energy on Volume

In Chapter 2, we learned that the Internal Energy depends upon both
the temperature and volume, U=U(V, T):

Constant V Heat Capacity

Internal Pressure

However, we had no method to calculate the Internal Pressure, T.
Now we do!!

Divide by dV and hold T constant.

That's nice, but how do we evaluate (S/V)T ? 
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Divide by dV and hold T constant.

That's nice, but how do we evaluate (S/V)T ? 

Remember that:

And so, Voila:

This equation is often termed a Thermodynamic Equation of State
because it relates the pressure to thermodynamic properties of the
system.
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Review Example 2: The van der Waals Equation of State is:

(A) Develop an expression for T for a van der Waals gas
(We performed this calculation in Chapter 2)

(B)  For CO2(g), a = 3.61 atm L2/mol2.  What is U (in J) when 1 mol of CO2

is compressed from 1.0 L to 0.2 L? 1 L-atm = 101 J
U = -14.4 L-atm  -1.5 kJ

Note that U < 0, which is what one expects for an attractive gas when
the molecules get closer together.

Review Example 1: Evaluate the internal pressure, T , for a Perfect Gas
(We performed this calculation in Chapter 2)  

T = (U/V)T = 0 

So we have now proven that the Internal Energy is independent of volume
for a Perfect Gas.
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Cp - CV Revisited 

In Chapter 2, starting with:

We derived the equation:  

We then presented the relation (without proof):

We now see where this relation comes from.

We used the expression for (U/V)T to obtain the final equation
for  Cp - CV:    

where and

64

Comment: We showed earlier that, for a van der Waals gas,
(U/V)p = a(n/V)2

This term is positive, as it will be for all "attractive" gases.
This result implies that Cp - CV > R for all gases in which attractive
forces predominate. 

This is intuitively consistent with the expectation that it will be harder
to separate molecules if there are attractive forces than if there are
no interactions (i.e. a Perfect Gas)
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Applications of the Equations

The Dependence of Enthalpy on Pressure

In Chapter 2, we learned that the the Enthalpy depends upon both
the temperature and pressure, H=H(p,T):

Constant Pressure Heat Capacity

In order to evaluate the first term in this equation, we presented (without proof):

You should  know how to perform this type of calculation (and similar
ones).

We now have the tools to derive the above expression.

Let's prove this equation for       in class.
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Consider a gas which obeys the Equation of State:

Calculate the Enthalpy change, H (in J), when one mole of this gas is
compressed isothermally (at 25 oC) from 1. atm to 10. atm.

1 L-atm = 101 J
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The Dependence of Thermodynamic Quantities on Volume
for a non-Perfect Gas

Consider a hypothetical gas that obeys the Equation of State:

If this gas undergoes an isothermal expansion from V1 to V2 , develop
integrated expressions for the following quantities in terms of 
n, R, T, V1 and V2:   S, U, H, A and  G.

Do not use either A = U - TS or G = H - TS except as a consistency
check on your calculations.
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The Dependence of Thermodynamic Quantities on Pressure
for a non-Perfect Gas

Consider a hypothetical gas that obeys the Equation of State:

If this gas undergoes an isothermal compression from p1 to p2 , develop
integrated expressions for the following quantities in terms of 
n, R, T, p1 and p2:   S, U, H, A and  G.

Do not use either A = U - TS or G = H - TS except as a consistency
check on your calculations.
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Consider a hypothetical gas that obeys the Equation of State:

If this gas undergoes an isothermal compression from p1 to p2 , develop
integrated expressions for the following quantities in terms of 
n, R, T, p1 and p2:   S, U, H, A and  G.

Do not use either A = U - TS or G = H - TS except as a consistency
check on your calculations.

Homework:

Answers:
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Examples of Non-PV Work

If an  elastic material (e.g. a rubber band) is stretched, the work
is:  dw = +fdL

F is the force and L is the length.

If an electric field is applied to a polarizable material, the work involved
is:  dw = -DdE

E is the electric field strength and D is the resulting electrical displacement.

If a liquid with surface tension spreads on a solid surface, the work involved
is:  dw = +dA

A is the surface area and  is the surface area.

One occasionally encounters other types of non-Pressure-Volume work
in thermodynamics:

This is FYI:  You are NOT responsible for non-PV work
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Thermodynamics of Rubber Elasticity
This is FYI only

Pressure-Volume work is only one type of thermodynamic work that can
be performed on a system.

Another type of work which very important in the rubber/elastomer industry is
the work involved in stretching an elastomeric material (e.g. a rubber band)
from it's equilibrium length.

We shall demonstrate that, although some of the equations will change,
the same methods which we have learned can be used to calculate the
thermodynamic quantities involved in this process.

Equilibrium
Length (Lo)

Stretched
Length (L)

The infinitesimal value of the work involved in stretching the rubbery material
from L to L+dL is:  dw = +fdL

This is analogous to the term, dw = -pdV, in systems where there is
pressure-volume work.
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The infinitesimal value of the work involved in stretching the rubbery material
from L to L+dL is:  dw = +fdL

The First Law expression for dU is: dU = dq + dw = TdS + fdL

The equations for the related thermodynamic quantities (H, A and G) are:

H = U -fL

A = U-TS

G = H - TS

Let's use the thermodynamic methods we've learned for P-V work to derive
the following expressions for dH, dA and dG:

dH = TdS - Ldf

dA = -SdT + fdL

dG = -SdT - LdF

We can also use dA and dG to obtain the following
Maxwell Relations (in class):

and
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Properties of the Gibbs Energy

Thus: and

G

T (constant p)

Slope = -S

S is positive (-S is negative)
so G is decreasing with 
increasing T

V is positive so G is 
increasing with 
increasing p

G

P (constant T)

Slope = V
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Variation of the Gibbs Energy with Temperature

Therefore:

It is more convenient to put the variation of G in terms of H, rather than S.

It is also more convenient (i.e. simpler functionality) to solve for the
derivative of G/T (rather than of G):

After a number of algebraic manipulations (for which you are not responsible),
it can be shown that:

Note: We are performing the derivation below solely to obtain an equation 
useful when determining the temperature dependence of the
equilibrium constant.  You are NOT responsible for this derivation.
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If one is considering a reaction, R  P, then the above equation can be
applied to both reactants and products to get:

where G = GP - GR and  H = HP -HR

However, the equation will be very useful when we study the temperature
dependence of equilibrium constants in Chapter 6 because ln(Keq) = -Go/RT 

We will not discuss or use this equation at this time.
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Variation of the Gibbs Energy with Pressure

Therefore:

For an isothermal change in pressure, one has:

If we're dealing with the Molar Gibbs Energy, the equation is easily modified.

or
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Liquid and Solids

Unlike gases, the molar volume of condensed phase materials 
(liquids and solids) is almost completely independent of pressure.  
Therefore, the above equation simplifies to:

Example: Calculate the change (in J) in the molar Gibbs energy 
[Gm(p) - Gm(po)] of one mole of ice at -10 oC when the applied
pressure is increased from 1 bar to 5 bar.

1 L-bar = 100 J
M = 18 g/mol
d = 0.92 g/cm3

Gm(p) - Gm(po) = 7.8 J  8 J

If the initial pressure is po = 1 bar, then the above equation can be
written as: 

Consider a solid or liquid phase reaction:  Rct  Prod

Gm(Rct) = Gm
o(Rct) + Vm(Rct)(P-Po)

Gm(Prod) = Gm
o(Prod) + Vm(Prod)(P-Po)

Gm = Gm(Prod) - Gm(Rct)

Gm = Gm
o + Vm(p-po)

Gm
o = Gm

o(Prod) - Gm
o(Rct)

Vm = Vm(Prod) - Vm(Rct)

p

Gm
po:       Gm > 0

peq:      Gm = 0

pspont:  Gm < 0

Rct:  Slope = Vm(Rct)

Prod:  Slope = Vm(Prod)

po=1 bar peq pspont

The Synthesis of Diamond

78
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C(graph)  C(diam)

At 25 oC,   Gm
o = fGo(diam) - fGo(graph) 

= 2.90 kJ/mol - 0

= 2.90x103 J/mol

= 2.90x103 kPa-L/mol

Reaction not 
spontaneous 

at Po = 1 bar

Vm(graph) = 5.33 mL/mol

Vm(diam)  = 3.42 mL/mol

Increased pressure
would favor diamond

Vm = Vm(diam) - Vm(graph)
= 3.42 mL/mol - 5.33 mL/mol

= -1.91 mL/mol

= -1.91x10-3 L/mol

At what pressure are graphite and diamond in equilibrium?

Gm = Gm
o + Vm(p-po)

Let's apply this equation to the synthesis of diamond from graphite:
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Gm = Gm(diam) - Gm(graph)

Gm = Gm
o + Vm(p-po)

Gm
o = Gm

o(diam) - Gm
o(graph)

Vm = Vm(diam) - Vm(graph)

po:      Gm > 0

peq:     Gm = 0

pspont:  Gm < 0

p

Gm

Graphite:  Slope = Vm(graph)

Diamond:  Slope = Vm(diam)

po=1 bar peq pspont

Equilibrium:  At peq ,  Gm = 0

80
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0 = Gm
o + Vm(peq-po)

p

Gm

po:      Gm > 0

peq:     Gm = 0

pspont:  Gm < 0

Graphite:  Slope = Vm(graph)

Diamond:  Slope = Vm(diam)

po=1 bar peq pspont

= 1.52x106 kPa

peq = po + 1.52x106 kPa

= 100 kPa + 1.52x106 kPa

= 1.52x106 kPa

peq = 1.52x106 kPa•1 bar/100 kPa

= 15,200 bar
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A Postscript

Synthetic diamond was first produced successfully in 1954
at the General Electric Research Laboratories

Because the reaction to form diamond is extremely slow at
room temperature, they performed the experiment at 1650 oC

At the higher temperature, Gm = 8.16 kJ/mol, leading to
Peq = 43,000 bar.

An actual pressure of 95,000 bar was applied to force the
reaction to be very spontaneous.
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Gases

Obviously, we cannot consider the molar volume of a gas to be independent
of pressure.  However, if we assume the gas obeys the Perfect Gas equation,
we have:

If the pressure on the gas is increased isothermally, then

Variation of the Gibbs Energy with Pressure
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Example: Calculate the change (in J) in the molar Gibbs energy 
[Gm(p) - Gm

o] of one mole of water vapor at 110 oC when
the applied pressure is increased from 1 bar to 5 bar.

R = 8.31 J/mol-K
Gm(p) - Gm

o = 5120 J  5 kJ

Note that the increase in Gibbs energy of the gas is almost 3 orders of
magnitude higher than the liquid (<10 J).

This is reasonable when one remembers that the molar volumes of
gases are ~3 orders of magnitude higher than liquids or solids.
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Chemical Potential ()

If we're dealing with one mole of a substance, this equation becomes

The Gibbs Energy per mole of a substance, Gm , is given a fancy
title,  Chemical Potential and symbol,  

Pure Substances

It seems a little foolish to give the Molar Gibbs Energy a new name.
However, when we deal with mixtures it becomes more important.

For a pure substance, though:    Gm
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Chemical Potential ()

The Chemical Potential of each component is given by:

Mixtures

For mixtures, one must consider variations in G results from changes in
temperature and pressure PLUS changes in the number of moles of each
component.

Let's consider a mixture with two components (A and B):
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Chemical Potential ()

The Chemical Potential of each component is given by:

Therefore, the equation for dG becomes:

The chemical potential of a component in a mixture depends upon its
environment.

For example, the chemical potential of pure CHCl3 is different from
its chemical potential in a mixture of CHCl3 with CH3COCH3
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Multicomponent Mixtures

In a two component mixture, dG is given by:

If there are N components, one can write:

where: n' indicates that all nj  ni are held constant


