## PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES

Chapter 4 Outline
HW: Questions are below. Solutions are in separate file on the course web site.
Sect. Title and Comments Required?

1. The Stabilities of Phases ..... YES
2. Phase Boundaries ..... YES
We will NOT cover the phase rule (Sect. 4.2.b)
3. Three Typical Phase Diagrams ..... MOSTYou are responsible for basic phase diagrams (e.g. Fig. 4.8), but notthe more complex diagrams (such as Figs. 4.7, 4.9 and 4.10); i.e. onlyfor phase diagrams with 3 phases (solid, liquid and vapor)
4. The Dependence of Stability on the Conditions ..... YES
5. The Location of Phase Boundaries ..... YES
6. The Ehrenfest Classification of Phase Transitions ..... NO

## Chapter 4 Homework Questions

Where necessary below, you may use the following relation between Molar Volume ( $\mathrm{V}_{\mathrm{m}}$ ), Molar Mass (M), and density ( $\rho$ ): $V_{m}=\frac{M}{\rho}$
4.1 For this question, assume that the molar entropy of iron is constant at $53 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.

Calculate the change in Chemical Potential of iron (in $\mathrm{J} / \mathrm{mol}$ ) when the temperature is increased from $100^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
4.2 The molar entropy of water is temperature dependent and over the liquid range, follows the equation: $\mathrm{S}_{\mathrm{m}}{ }^{\mathrm{o}}=\mathrm{a}+\mathrm{bT} \mathrm{J} / \mathrm{mol}-\mathrm{K}, \mathrm{a}=1.5 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \mathrm{b}=0.23 \mathrm{~J} / \mathrm{mol}-\mathrm{K}^{3}$ ( T is temperature in Kelvins).

Calculate the change in Chemical Potential of water (in $\mathrm{J} / \mathrm{mol}$ ) when the temperature is increased from $25^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
4.3 The density of liquid benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{M}=78\right)$ is $0.88 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$.

Calculae the change in Chemical Potential of benzene (in $\mathrm{J} / \mathrm{mol}$ ) when the pressure is increased from 1 . bar to 1,000 bar at $25^{\circ} \mathrm{C}$.
4.4 Calculate the change in Chemical Potential of $\mathrm{CH}_{4}(\mathrm{~g})(\mathrm{in} \mathrm{J} / \mathrm{mol})$ when the pressure is increased from 1. bar to 20 . bar at $25^{\circ} \mathrm{C}$.
4.5 When Benzene ( $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{M}=78$ ) liquid freezes to the solid at $6.0^{\circ} \mathrm{C}$ and 1 bar , the density changes from $0.88 \mathrm{~g} / \mathrm{cm}^{3}$ to $0.95 \mathrm{~g} / \mathrm{cm}^{3}$. The Enthalpy of Fusion of Benzene is $9.80 \mathrm{~kJ} / \mathrm{mol}$. Calculate the pressure (in bar) required to raise the freezing point to $15.0^{\circ} \mathrm{C}$.
4.6 Calculate the melting point of ice under a pressure of 1000 bar. Assume that the density of ice under these conditions is approximately $0.92 \mathrm{~g} / \mathrm{cm}^{3}$ and that of liquid water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$. The normal melting point (under 100 kPa pressure) is $0^{\circ} \mathrm{C}$ and the Enthalpy of Fusion is $6.01 \mathrm{~kJ} / \mathrm{mol}$.
4.7 The molar volume of a certain solid is $161.0 \mathrm{~cm}^{3} / \mathrm{mol}$ at 1.0 atm and 350.75 K , its normal melting point. The molar volume of the liquid is $163.3 \mathrm{~cm}^{3} / \mathrm{mol}$. At a pressure of 100.0 atm , the melting point changes to 351.26 K .
Calculate the Enthalpy and Entropy of Fusion of the solid.
4.8 The vapor pressure of dichloromethane at $24^{\circ} \mathrm{C}$ is 53.3 kPa , and it's Enthalpy of Vaporization is $28.7 \mathrm{~kJ} / \mathrm{mol}$. Estimate the temperature (in ${ }^{\circ} \mathrm{C}$ ) at which its vapor pressure is $70 ; 0 \mathrm{kPa}$.
4.9 Napthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}, \mathrm{M}=128\right)$ melts at $80.2^{\circ} \mathrm{C}$. If the vapour pressure of the liquid is 1.3 kPa at $85.8^{\circ} \mathrm{C}$ and 5.3 kPa at $119.3^{\circ} \mathrm{C}$, calculate the following:
(a) The Enthalpy of Vaporization
(b) The normal boiling point
(c) The Entropy of Vaporization at the normal boiling point.
4.10 The normal boiling point of liquid mercury, $\mathrm{Hg}(\mathrm{l})$, is $357^{\circ} \mathrm{C}$. The vapor pressure of liquid mercury at $250^{\circ} \mathrm{C}$ is 75 torr. [1 bar $=750$ torr]

Calculate the Enthalpy of Vaporization of mercury, in $\mathrm{kJ} / \mathrm{mol}$.

## Chapter 4

## Physical Transformations of Pure Substances

## Phase Diagrams and Phase Boundaries

## Phase Diagram

The phase diagram of a substance shows the regions of pressure and temperature at which the various phases are stable.

A typical phase diagram is shown to the right.

Phase Boundaries


These are the lines (combination of $p$ and $T$ ) on which two phases are in equilibrium

## The Critical Point

The critical temperature $\left(T_{c}\right)$ is the highest temperature at which a substance can be liquified.

The vapor pressure at $T_{c}$ is called the critical pressure ( $p_{\mathrm{c}}$ ).

The Triple Point
The triple point temperature and pressure,


Temperature, $T$ $T_{3}$ and $p_{3}$, is the one point in a phase diagram at which all three phases (solid, liquid and vapor) are in equilibrium.

## The Boiling Point

The boiling point is the temperature at which liquid and vapor are in equilibrium.

The boiling point depends upon the applied (external) pressure.

$P_{\text {ext }}>$ Vap. Press. Liquid
$P_{\text {ext }}=$ Vap. Press. Liquid + Gas (boiling point)
$P_{\text {ext }}<$ Vap. Press. Gas
The curve, representing the combinations of $p$ and $T$ at which liquid and vapor are in equilibrium is often called the vaporization curve.

## The Melting Point

The melting (or freezing) point is the temperature at which solid and liquid are in equilibrium.

The melting point depends upon the applied (external) pressure, but to a much smaller extent than the boiling point.

The Sublimation Curve


This represents the combination of temperatures and pressures at which solid and vapor are in equilibrium

## A Typical Phase Diagram



## Pressure dependence of the Boiling Point



$$
\begin{aligned}
\text { Liquid } & \leftrightarrow \text { Vapor } \\
\mathrm{d}(\text { liq }) & \gg \mathrm{d} \text { (vap) } \\
\mathrm{V}(\text { liq }) & \ll \mathrm{V}(\text { vap })
\end{aligned}
$$

Increased pressure shifts equilibrium in direction of lower volume.

## Pressure dependence of the Melting Point in "normal" substances



Solid $\leftrightarrow$ Liquid
$\mathrm{d}($ sol $)>\mathrm{d}($ liq $)$
$\mathrm{V}($ sol $)<\mathrm{V}($ liq $)$
Increased pressure shifts equilibrium in direction of lower volume.

## Question:

Water melts and then boils (i.e. it has a liquid phase)
Benzene melts and then boils
Iron melts and then boils
lodomethane melts and then boils
etc., etc., etc.
Why does $\mathrm{CO}_{2}$ sublime directly from solid to vapor ???

## Answer:

Because the triple point pressure of $\mathrm{CO}_{2}$ is 5.1 bar ( $\sim 5 \mathrm{~atm}$.), which is higher than the pressure of the atmosphere on Earth.

## The Phase Diagram of $\mathrm{CO}_{2}$




## Pressure dependence of the Melting Point in Water



$$
\begin{aligned}
\text { Solid (ice) } & \leftrightarrow \text { Liquid } \\
\mathrm{d}(\text { (ice) } & <\mathrm{d} \text { (liq) } \\
\mathrm{V} \text { (ice) } & >\mathrm{V}(\text { liq })
\end{aligned}
$$

Increased pressure shifts equilibrium in direction of lower volume.

## Some More Complex Phase Diagrams

 (FYI)

## Helium



## Phase Stability and Phase Transitions

## Chemical Potential

As discussed in Chapter 3, the chemical potential of a substance is defined by:

$$
\mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{p, T, n_{j} \neq n_{i}}
$$

However, in a pure (one component) system, the chemical potential is simply the Molar Gibbs Energy: $\mu=\mathrm{G}_{\mathrm{m}}$

## Phase Equilibrium

Consider two phases, $\alpha$ and $\beta$ (e.g. solid and liquid). The two phases will be in equilibrium when: $\mu_{\alpha}=\mu_{\beta}$

When the pressure and temperature are varied, they will stay in equilibrium when: $\mathrm{d} \mu_{\alpha}=\mathrm{d} \mu_{\beta}$

## The Temperature Dependence of Phase Stability

From Chapter 3, the temperature and pressure dependence of the Gibbs Energy is given by:
$d \mu=d G_{m}=-S_{m} d T+V_{m} d p=\left(\frac{\partial \mu}{\partial T}\right)_{p} d T+\left(\frac{\partial \mu}{\partial p}\right)_{T} d p$
Therefore, the change in chemical potential (Molar Gibbs Energy) with rising temperature is:

$$
\left(\frac{\partial \mu}{\partial T}\right)_{p}=-S_{m}
$$

Notes
The entropies of all substances in all phases is positive, $\mathrm{S}_{\mathrm{m}}>0$.
Therefore $\mu$ always decreases with rising temperature.
Relative entropies of different phases are: $S_{m}($ gas $) \gg S_{m}($ liq $)>S_{m}($ sol $)$ Therefore, the decrease in $\mu$ with increasing temperature is greatest for the gas phase, and smallest for the solid.

Two phases ( $\alpha$ and $\beta$ ) are in equilibrium when $\mu_{\alpha}=\mu_{\beta}$
The phase with the lowest chemical potential at a given temperature is the most stable phase.


Remember:

$$
\left(\frac{\partial \mu}{\partial T}\right)_{p}=-S_{m}
$$

Therefore:

$$
\left|\left(\frac{\partial \mu}{\partial T}\right)_{p}^{\text {gas }}\right|>\left|\left(\frac{\partial \mu}{\partial T}\right)_{p}^{l i q}\right|>\left|\left(\frac{\partial \mu}{\partial T}\right)_{p}^{\text {sol }}\right|
$$

## The Effect of Pressure on the Melting Point

$$
d \mu=d G_{m}=-S_{m} d T+V_{m} d p=\left(\frac{\partial \mu}{\partial T}\right)_{p} d T+\left(\frac{\partial \mu}{\partial p}\right)_{T} d p \longrightarrow\left(\frac{\partial \mu}{\partial p}\right)_{T}=+V_{m}
$$

The chemical potential of all phases increase with rising pressure.

In most materials, $\mathrm{V}_{\mathrm{m}}(\mathrm{liq})>\mathrm{V}_{\mathrm{m}}$ (sol)
Therefore, $\mu(\mathrm{liq})$ rises more rapidly than $\mu($ sol $)$ with increasing pressure.

This results in a higher melting point at higher pressure.


## The Effect of Pressure on the Melting Point

$$
d \mu=d G_{m}=-S_{m} d T+V_{m} d p=\left(\frac{\partial \mu}{\partial T}\right)_{p} d T+\left(\frac{\partial \mu}{\partial p}\right)_{T} d p \longrightarrow\left(\frac{\partial \mu}{\partial p}\right)_{T}=+V_{m}
$$

The chemical potential of all phases increase with rising pressure.

In a few materials, most notably water, $\mathrm{V}_{\mathrm{m}}($ sol $)>\mathrm{V}_{\mathrm{m}}$ (liq) Therefore, $\mu($ sol $)$ rises more rapidly than $\mu$ (liq) with increasing pressure.

This results in a lower melting point at higher pressure.


## The Dependence of Chemical Potential ( $\mu$ ) on Pressure and Temperature

From Chapter 3, the dependence of G on T and P is given by

$$
d G=-S d T+V d p
$$

If we're dealing with one mole of a substance, this equation becomes

$$
d G_{m}=d \mu=\left(\frac{\partial \mu}{\partial T}\right)_{p} d T+\left(\frac{\partial \mu}{\partial p}\right)_{T} d P=-S_{m} d T+V_{m} d p
$$

Therefore, we see that: $\quad\left(\frac{\partial \mu}{\partial T}\right)_{p}=-S_{m}$ and $\left(\frac{\partial \mu}{\partial P}\right)_{T}=+V_{m}$
If the temperature is changed, $\Delta \mu=\int_{T_{1}}^{T_{2}}-S_{m} d T$
If the pressure is changed, $\Delta \mu=\int_{p_{1}}^{p_{2}}+V_{m} d p$
Examples of how to calculate $\Delta \mu$ are given in HW \#4.1 - \#4.4

## Quantitative Treatment of Phase Equilibria: The Location of Phases Boundaries

Two phases, $\alpha \rightleftharpoons \beta$ will be in equilibrium when their chemical potentials are equal:

$$
\mu_{\beta}(p, T)=\mu_{\alpha}(p, T)
$$

For the two phases to remain in equilibrium as the pressure/temperature are changed, their variations must be equal:

$$
d \mu_{\beta}(p, T)=d \mu_{\alpha}(p, T)
$$



Remembering that: $\quad d \mu=-S_{m} d T+V_{m} d p$
the criterion for two phases to remain in equilibrium is:

$$
-S_{\beta, m} d T+V_{\beta, m} d p=-S_{\alpha, m} d T+V_{\alpha, m} d p
$$

Thus, the criterion for two phases to remain in equilibrium is:

$$
\begin{array}{r}
-S_{\beta, m} d T+V_{\beta, m} d p=-S_{\alpha, m} d T+V_{\alpha, m} d p \\
\left(V_{\beta, m}-V_{\alpha, m}\right) d p=\left(S_{\beta, m}-S_{\alpha, m}\right) d T
\end{array}
$$

The Clapeyron Equation

$$
\frac{d p}{d T}=\frac{S_{\beta, m}-S_{\alpha, m}}{V_{\beta, m}-V_{\alpha, m}}=\frac{\Delta_{t r s} S_{m}}{\Delta_{t r s} V_{m}}
$$

Because the two phases are in equilibrium, we can use the relation, $\Delta_{\text {trs }} \mathrm{S}=\Delta_{\text {trs }} \mathrm{H} / \mathrm{T}$, to obtain an alternative, equivalent form of the Clapeyron Equation:

$$
\frac{d p}{d T}=\frac{\Delta_{t r s} S}{\Delta_{t r s} V}=\frac{\Delta_{t r s} H}{T \Delta_{t r s} V}
$$

## Slopes of the Phase Boundaries

$$
\frac{d p}{d T}=\frac{\Delta_{t r s} S}{\Delta_{t r s} S}=\frac{\Delta_{t r s} H}{T \Delta_{t s} V}
$$

The Clapeyron Equation can be used both qualitatively and quantitatively.
In the next several slides, we will show how it can be used in a qualitative fashion to explain the relative slopes of various equilibrium curves in a phase diagram.


Why is Slope $(A D)>\operatorname{Slope}(A B)$ ?

AD: Solid-Vapor

$$
\begin{aligned}
& \Delta \mathrm{V}(\mathrm{~s}-\mathrm{V})=\mathrm{V}_{\text {vap }}-\mathrm{V}_{\text {sol }}=\mathrm{V}_{\text {vap }} \\
& \Delta \mathrm{S}(\mathrm{~s}-\mathrm{V})=\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {sol }} \\
& \frac{\mathrm{dP}}{\mathrm{dT}}=\frac{\Delta \mathrm{S}}{\Delta \mathrm{~V}}=\frac{\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {sol }}}{\mathrm{V}_{\text {vap }}}
\end{aligned}
$$

AB: Liquid-Vapor
$\Delta \mathrm{V}(\mathrm{I}-\mathrm{V})=\mathrm{V}_{\text {vap }}-\mathrm{V}_{\text {liq }}=\mathrm{V}_{\text {vap }}$
$\Delta \mathrm{S}(1-\mathrm{V})=\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}$
$\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{S_{\text {vap }}-S_{\text {liq }}}{V_{\text {vap }}}$

Because $\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {sol }}>\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}$ or $\Delta_{\text {sub }} \mathrm{S}>\Delta_{\text {vap }} \mathrm{S}$


Why is Slope(AC) >> Slope(AB) [and Slope(AD)] ?

AC: Solid-Liquid

$$
\begin{aligned}
& \Delta V(\mathrm{~s}-\mathrm{I})=\mathrm{V}_{\text {liq }}-\mathrm{V}_{\text {sol }} \\
& \Delta \mathrm{S}(\mathrm{~s}-\mathrm{I})=\mathrm{S}_{\text {liq }}-\mathrm{S}_{\text {sol }} \\
& \frac{\mathrm{dP}}{\mathrm{dT}}=\frac{\Delta \mathrm{S}}{\Delta \mathrm{~V}}=\frac{\mathrm{S}_{\text {liq }}-\mathrm{S}_{\text {sol }}}{V_{\text {liqq }}-\mathrm{V}_{\text {sol }}}
\end{aligned}
$$

AB: Liquid-Vapor $\Delta \mathrm{V}(\mathrm{I}-\mathrm{V})=\mathrm{V}_{\text {vap }}-\mathrm{V}_{\text {liq }}=\mathrm{V}_{\text {vap }}$ $\Delta S(l-v)=S_{\text {vap }}-S_{\text {liq }}$ $\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{S_{\text {vap }}-S_{\text {liq }}}{V_{\text {vap }}}$

$$
\text { Because } V_{\text {liq }}-V_{\text {sol }} \ll V_{\text {vap }}-\mathrm{V}_{\text {liq }} \text { or } \Delta_{\text {fus }} V \ll \Delta_{\text {vap }} V
$$



Why is Slope $(A C)<0$ in $\mathrm{H}_{2} \mathrm{O}$ ?
AC: Solid-Liquid

$$
\Delta \mathrm{V}(\mathrm{~s}-\mathrm{I})=\mathrm{V}_{\mathrm{liq}}-\mathrm{V}_{\mathrm{sol}}
$$

$$
\Delta \mathrm{S}(\mathrm{~s}-\mathrm{I})=\mathrm{S}_{\mathrm{liq}}-\mathrm{S}_{\mathrm{sol}}
$$

$$
\frac{\mathrm{dP}}{\mathrm{dT}}=\frac{\Delta \mathrm{S}}{\Delta \mathrm{~V}}=\frac{\mathrm{S}_{\text {liq }}-\mathrm{S}_{\text {sol }}}{\mathrm{V}_{\text {liq }}-\mathrm{V}_{\text {sol }}}
$$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O} \\
\mathrm{~d}_{\text {liq }}>\mathrm{d}_{\text {sol }} \\
\mathrm{V}_{\text {liq }}<\mathrm{V}_{\text {sol }} \\
\mathrm{V}_{\text {liq }}-\mathrm{V}_{\text {sol }}<0
\end{gathered}
$$

$$
\text { Because } \mathrm{V}_{\text {liq }}<\mathrm{V}_{\text {sol }}
$$

## Quantitative Application of the Clapeyron Equation

$$
\frac{d p}{d T}=\frac{\Delta_{t r s} S}{\Delta_{t r s} V}=\frac{\Delta_{t r s} H}{T \Delta_{t r s} V}
$$

The Solid-Liquid Transition: Melting (aka Fusion)

$$
\frac{d p}{d T}=\frac{\Delta_{\text {fis }} H}{T \Delta_{\text {fis }} W}=\frac{\Delta_{\text {fus }} H}{T\left(V_{\text {liq }}-V_{\text {sol }}\right)}
$$

Over small ranges of temperature, $\mathrm{T}, \Delta_{\text {fus }} \mathrm{H}$ and $\Delta_{\text {fus }} \mathrm{V}$ are approximately constant. Therefore, one can write:
$\frac{\Delta p}{\Delta T}=\frac{p_{2}-p_{1}}{T_{2}-T_{1}} \approx \frac{\Delta_{\text {fis }} H}{T\left(V_{\text {liq }}-V_{\text {sol }}\right)} \quad$ or $\quad \Delta p \approx \frac{\Delta_{\text {fis }} H}{T\left(V_{\text {liq }}-V_{\text {sol }}\right)} \Delta T$
Note: The Clapeyron Equation cannot be used for quantitative calculations on vaporization or sublimation because it cannot be assumed that $\Delta \mathrm{V}$ is independent of temperature, pressure for these transitions.

## Side Note: A more rigorous (but unnecessary) equation (FYI Only)

$\frac{\Delta p}{\Delta T}=\frac{p_{2}-p_{1}}{T_{2}-T_{1}} \approx \frac{\Delta_{\text {fis }} H}{T\left(V_{\text {liq }}-V_{\text {sol }}\right)} \quad$ or $\quad \Delta p \approx \frac{\Delta_{\text {fis }} H}{T\left(V_{\text {liq }}-V_{\text {sol }}\right)} \Delta T$
It's straightforward to show that if one doesn't make the approximation that $\mathrm{T}=$ Constant, then the result is:
$\frac{d p}{d T}=\frac{\Delta_{\text {fus }} H}{T \Delta_{\text {fus }} V}=\frac{\Delta_{\text {fis }} H}{T\left(V_{\text {liq }}-V_{\text {sol }}\right)} \longrightarrow \Delta p=\frac{\Delta_{\text {fis }} H}{\Delta_{\text {fis }} V} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=\frac{\Delta_{\text {fus }} H}{\left(V_{\text {liq }}-V_{\text {sol }}\right)} \ln \left(T_{2} / T_{1}\right)$
However, it can also be shown that if $\Delta T=T_{2}-T_{1} \ll T_{1}$, then the more rigorous solution reduces to the one we're using.

$$
\ln \left(\frac{T_{2}}{T_{1}}\right)=\ln \left(\frac{T_{1}+\Delta T}{T_{1}}\right)=\ln \left(1+\frac{\Delta T}{T_{1}}\right)=\ln (1+x) \approx x=\frac{\Delta T}{T_{1}}
$$

$$
\frac{\Delta p}{\Delta T}=\frac{p_{2}-p_{1}}{T_{2}-T_{1}} \approx \frac{\Delta_{\text {fis }} H}{T\left(V_{\text {liq }}-V_{\text {sol }}\right)}
$$

Example: The melting point of benzene at 1 bar is $6.0^{\circ} \mathrm{C}$.
What is the melting point of benzene under an applied pressure of 200 bar?

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{mp}}(200 \mathrm{bar})=9.7^{\circ} \mathrm{C} & \Delta_{\text {fus }} \mathrm{H}=9.8 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{M}=78 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{~d}(\mathrm{sol})=0.95 \mathrm{~g} / \mathrm{cm}^{3} \\
& \mathrm{~d}(\text { liq })=0.88 \mathrm{~g} / \mathrm{cm}^{3} \\
& 1 \mathrm{~L} \text {-bar }=100 \mathrm{~J}
\end{array}
$$

Note: Similar problems on solid-liquid transitions are given in HW \#4.5-\#4.7

## Vaporization and Sublimation

$$
\frac{d p}{d T}=\frac{\Delta_{t r s} S}{\Delta_{t r s} V}=\frac{\Delta_{t r s} H}{T \Delta_{t r s} V}
$$

These two phase transitions involve the gas phase and, therefore, one cannot assume that $\Delta_{\text {trs }} \mathrm{V}=\mathrm{V}_{\text {gas }}-\mathrm{V}_{\text {liq }}\left(\right.$ or $\left.\mathrm{V}_{\text {sol }}\right)=$ Constant.

However, it is valid to assume that (a) $\Delta_{\text {trs }} \vee \approx \mathrm{V}_{\text {gas }}$
and (b) $\mathrm{V}_{\text {gas }}=\mathrm{RT} / \mathrm{p}$ (for 1 mole )
Using $\Delta_{\text {trs }} V=R T / p$, one has:
$\frac{d p}{d T}=\frac{\Delta_{t r s} H}{T \Delta_{t r s} V}=\frac{\Delta_{t r s} H}{T(R T / p)}=\frac{p \Delta_{t r s} H}{R T^{2}}$
Separate Variables: $\frac{d p}{p}=\frac{\Delta_{t r s} H}{R T^{2}} d T$

Separate Variables: $\frac{d p}{p}=\frac{\Delta_{t r s} H}{R T^{2}} d T$

Now, integrate, assuming that $\Delta_{\text {trs }} \mathrm{H}$ is independent of T :

$$
\begin{aligned}
& \int_{p_{1}}^{p_{2}} \frac{d p}{p}=\frac{\Delta_{t r s} H}{R} \int_{T_{1}}^{T_{2}} \frac{d T}{T^{2}} \\
& {[\ln p]_{p_{1}}^{p_{2}}=\frac{\Delta_{t r s} H}{R}\left[-\frac{1}{T}\right]_{T_{1}}^{T_{2}}}
\end{aligned}
$$

## The Clausius-Clapeyron Equation

$$
\ln \left(p_{2} / p_{1}\right)=-\frac{\Delta_{t r s} H}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]
$$

## The Clausius-Clapeyron Equation

$$
\ln \left(p_{2} / p_{1}\right)=-\frac{\Delta_{t r s} H}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]
$$

For vaporization, $\Delta_{\text {trs }} \mathrm{H}=\Delta_{\text {vap }} \mathrm{H}$
For sublimation, $\Delta_{\text {trs }} \mathrm{H}=\Delta_{\text {sub }} \mathrm{H}$

## Applications

If one is given the enthalpy of vaporization (or sublimation) + the vapor pressure at one temperature, then one can calculate either
(a) The vapor pressure at a second temperature or
(b) The temperature at which the vapor pressure reaches a certain value.

If one knows the vapor pressure at two temperatures, then the enthalpy of vaporization (or sublimation) can be calculated.

## The Clausius-Clapeyron Equation

$$
\ln \left(p_{2} / p_{1}\right)=-\frac{\Delta_{t r s} H}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]
$$

Example: The "normal boiling point" ${ }^{* *}$ of benzene is $80^{\circ} \mathrm{C}$, and the Enthalpy of Vaporization is $30.8 \mathrm{~kJ} / \mathrm{mol}$.
Calculate the temperature at which the vapor pressure of benzene is 150 torr.

$$
\mathrm{T}=33^{\circ} \mathrm{C} \quad \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

Note: Similar problems on liquid (or solid) to gase transitions are given in HW \#4.8-\#4.10
**You should know that the "normal" boiling point is the temperature at which the vapor pressure of a substance is 1 bar.

