PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES Chapter 4 Outline

HW: Questions are below. Solutions are in separate file on the course web site.

Sect.	Title and Comments	Required ?
1.	The Stabilities of Phases	YES
2.	Phase Boundaries We will NOT cover the phase rule (Sect. 4.2.b)	YES
3.	Three Typical Phase Diagrams You are responsible for basic phase diagrams (e.g. Fig. 4.8), but not the more complex diagrams (such as Figs. 4.7, 4.9 and 4.10); i.e. only for phase diagrams with 3 phases (solid, liquid and vapor)	MOST
4.	The Dependence of Stability on the Conditions	YES
5.	The Location of Phase Boundaries	YES
6.	The Ehrenfest Classification of Phase Transitions	NO

Chapter 4 Homework Questions

Where necessary below, you may use the following relation between Molar Volume (V_m), Molar Mass (M), and density (ρ): $V_m = \frac{M}{\rho}$

- 4.1 For this question, assume that the molar entropy of iron is constant at 53 J/mol-K. Calculate the change in Chemical Potential of iron (in J/mol) when the temperature is increased from 100 °C to 200 °C
- **4.2** The molar entropy of water is temperature dependent and over the liquid range, follows the equation: $S_m^{\circ} = a + bT J/mol-K$, a = 1.5 J/mol-K, $b = 0.23 J/mol-K^3$ (T is temperature in Kelvins). Calculate the change in Chemical Potential of water (in J/mol) when the temperature is increased from 25 °C to 90 °C
- 4.3 The density of liquid benzene (C₆H₆, M=78) is 0.88 g/cm³ at 25 °C.
 Calculae the change in Chemical Potential of benzene (in J/mol) when the pressure is increased from 1. bar to 1,000 bar at 25 °C.
- **4.4** Calculate the change in Chemical Potential of CH₄(g) (in J/mol) when the pressure is increased from 1. bar to 20. bar at 25 °C.
- **4.5** When Benzene (C₆H₆, M=78) liquid freezes to the solid at 6.0 °C and 1 bar, the density changes from 0.88 g/cm³ to 0.95 g/cm³. The Enthalpy of Fusion of Benzene is 9.80 kJ/mol. Calculate the pressure (in bar) required to raise the freezing point to 15.0 °C.
- **4.6** Calculate the melting point of ice under a pressure of 1000 bar. Assume that the density of ice under these conditions is approximately 0.92 g/cm³ and that of liquid water is 1.00 g/cm³. The normal melting point (under 100 kPa pressure) is 0 °C and the Enthalpy of Fusion is 6.01 kJ/mol.
- **4.7** The molar volume of a certain **solid** is 161.0 cm³/mol at 1.0 atm and 350.75 K, its normal melting point. The molar volume of the **liquid** is 163.3 cm³/mol. At a pressure of 100.0 atm, the melting point changes to 351.26 K.

Calculate the Enthalpy and Entropy of Fusion of the solid.

4.8 The vapor pressure of dichloromethane at 24 °C is 53.3 kPa, and it's Enthalpy of Vaporization is 28.7 kJ/mol. Estimate the temperature (in °C) at which its vapor pressure is 70;0 kPa.

- **4.9** Napthalene (C₁₀H₈, M=128) melts at 80.2 °C. If the vapour pressure of the liquid is 1.3 kPa at 85.8 °C and 5.3 kPa at 119.3 °C, calculate the following:
 - (a) The Enthalpy of Vaporization
 - (b) The normal boiling point
 - (c) The Entropy of Vaporization at the normal boiling point.
- **4.10** The normal boiling point of liquid mercury, Hg(l), is 357 °C. The vapor pressure of liquid mercury at 250 °C is 75 torr. [1 bar = 750 torr]

Calculate the Enthalpy of Vaporization of mercury, in kJ/mol.

The Dependence of Chemical Potential (µ) on Pressure and Temperature

From Chapter 3, the dependence of G on T and P is given by

dG = -SdT + Vdp

If we're dealing with one mole of a substance, this equation becomes

$$dG_m = d\mu = \left(\frac{\partial\mu}{\partial T}\right)_p dT + \left(\frac{\partial\mu}{\partial p}\right)_T dP = -S_m dT + V_m dp$$

Therefore, we see that: $\left(\frac{\partial \mu}{\partial T}\right)_n = -S_m$ and $\left(\frac{\partial \mu}{\partial P}\right)_T = +V_m$

If the temperature is changed, $\Delta \mu = \int_{T_1}^{T_2} -S_m dT$ If the pressure is changed, $\Delta \mu = \int_{p_1}^{p_2} +V_m dp$

Examples of how to calculate $\Delta \mu$ are given in HW #4.1 – #4.4

Slopes of the Phase Boundaries

$$\frac{dp}{dT} = \frac{\Delta_{trs}S}{\Delta_{trs}V} = \frac{\Delta_{trs}H}{T\Delta_{trs}V}$$

The Clapeyron Equation can be used both qualitatively and quantitatively.

In the next several slides, we will show how it can be used in a qualitative fashion to explain the relative slopes of various equilibrium curves in a phase diagram.

Quantitative Application of the Clapeyron Equation

$$\frac{dp}{dT} = \frac{\Delta_{trs}S}{\Delta_{trs}V} = \frac{\Delta_{trs}H}{T\Delta_{trs}V}$$

The Solid-Liquid Transition: Melting (aka Fusion)

$$\frac{dp}{dT} = \frac{\Delta_{fus}H}{T\Delta_{fus}V} = \frac{\Delta_{fus}H}{T\left(V_{liq} - V_{sol}\right)}$$

Over small ranges of temperature, T, $\Delta_{fus}H$ and $\Delta_{fus}V$ are approximately constant. Therefore, one can write:

$$\frac{\Delta p}{\Delta T} = \frac{p_2 - p_1}{T_2 - T_1} \approx \frac{\Delta_{fus} H}{T\left(V_{liq} - V_{sol}\right)} \quad \text{or} \quad \Delta p \approx \frac{\Delta_{fus} H}{T\left(V_{liq} - V_{sol}\right)} \Delta T$$

Note: The Clapeyron Equation cannot be used for quantitative calculations on vaporization or sublimation because it cannot be assumed that ΔV is independent of temperature, pressure for these transitions.

27

Side Note: A more rigorous (but unnecessary) equation (FYI Only)

$$\frac{\Delta p}{\Delta T} = \frac{p_2 - p_1}{T_2 - T_1} \approx \frac{\Delta_{fus} H}{T \left(V_{liq} - V_{sol} \right)} \quad \text{or} \quad \Delta p \approx \frac{\Delta_{fus} H}{T \left(V_{liq} - V_{sol} \right)} \Delta T$$

It's straightforward to show that if one doesn't make the approximation that T = Constant, then the result is:

$$\frac{dp}{dT} = \frac{\Delta_{fus}H}{T\Delta_{fus}V} = \frac{\Delta_{fus}H}{T\left(V_{liq} - V_{sol}\right)} \longrightarrow \Delta p = \frac{\Delta_{fus}H}{\Delta_{fus}V} \int_{T_1}^{T_2} \frac{dT}{T} = \frac{\Delta_{fus}H}{\left(V_{liq} - V_{sol}\right)} \ln\left(\frac{T_2}{T_1}\right)$$

However, it can also be shown that if $\Delta T = T_2 - T_1 << T_1$, then the more rigorous solution reduces to the one we're using.

$$\ln\left(\frac{T_2}{T_1}\right) = \ln\left(\frac{T_1 + \Delta T}{T_1}\right) = \ln\left(1 + \frac{\Delta T}{T_1}\right) = \ln\left(1 + x\right) \approx x = \frac{\Delta T}{T_1}$$

Separate Variables: $\frac{dp}{p} = \frac{\Delta_{trs}H}{RT^2} dT$

Now, integrate, assuming that $\Delta_{trs}H$ is independent of T:

$$\int_{p_1}^{p_2} \frac{dp}{p} = \frac{\Delta_{trs}H}{R} \int_{T_1}^{T_2} \frac{dT}{T^2}$$

$$\left[\ln p\right]_{p_{1}}^{p_{2}} = \frac{\Delta_{trs}H}{R} \left[-\frac{1}{T}\right]_{T_{1}}^{T_{2}}$$

The Clausius-Clapeyron Equation

$\ln(p_2/)$	$_$ $\Delta_{trs}H$	1	1
(p_1)	- R	T_2	T_1

