
SIMPLE MIXTURES 

Chapter 5 Outline 
 
HW: Questions are below.  Solutions are in separate file on the course web site. 
 
 
Sect.        Title and Comments                                                            Required? 

 
1. Partial Molar Quantities YES 
 
2. The Thermodynamics of Mixing YES 
 
3. The Chemical Potentials of Liquids YES 
 
4. Liquid Mixtures MOST 

We will not cover Sect. 4.b on Excess Functions and Regular 
Solutions. 

 
5. Colligative Properties YES 
 
6. Vapor Pressure Diagrams NO 
 
7. Temperature-Compositon Diagrams NO 
 
8. Liquid-Liquid Phase Diagrams NO 
 
9. Liquid-Solid Phase Diagrams NO 
 
10. The Solvent Activity A LITTLE 
  I’ll just discuss real solutions briefly, introducing activities and 
  activity coefficients.  We won’t perform any calculations on real solutions. 
 
11. The Solute Activity A LITTLE 
  I’ll just discuss real solutions briefly, introducing activities and 
  activity coefficients.  We won’t perform any calculations on real solutions. 
 
12. The Activities of Regular Solutions NO 
 
13.. The Activities of Ions in Solution NO 



Chapter 5 Homework Questions 
 
 

5.1 At 25 oC, the density of a 50% by mass of an Ethanol-Water solution is 0.914 g/cm3.  
Given that the Partial Molar Volume of water in the solution is 17.4 cm3/mol, calculate 
the Partial Molar Volume of Ethanol in the solution. 

 Note:  M(Ethanol) = 46. g/mol , M(Water) = 18. g/mol. 
 
5.2 The vapor pressure of pure benzene (C6H6, M=78) is 53.3 kPa at 60 oC.  When 19. grams 

of an involatile organic compound is dissolved in 500 g of Benzene, the vapor pressure 
drops to 51.5 kPa. 

 Calculate the Molar Mass of the organic compound. 
 
5.3 The freezing point of pure CCl4(liq) is -22.9 oC and the Freezing Point Depression 

constant is 30 oC.  When 100 grams of an unknown organic compound is added to 750 
grams of CCl4(l), the freezing point of the mixture is -33.4 oC 

 Calculate the Molar Mass of the organic compound. 
 
5.4 The boiling point of pure benzene is 80.1 oC and the Boiling Point Elevation constant 
 is 2.13 oC/m.  When a sample of napthalene (C10H8) is dissolved in 600. grams of 

Benzene, the boiling point  boiling point of the mixture is 81.3 oC. 
 How many grams of napthalene were dissolved in the benzene. 
 
 
5.5 When 0.15 grams of an unknown compound is dissolved in 100 mL of aqueous solution, 

the measured osmotic pressure of the solution is 0.65 kPa at 25 oC.  Calculate the molar 
mass of the unknown compound. 

 
5.6 Consider two containers separated by a partition.  Container A is of volume 5 L, and 

contains N2(g) at 2.0 atm and 30 oC.  Container B is of volume 10 L, and contains H2(g) 
at 2.0 atm and 30 oC.   

 Calculate the Entropy of mixing and the Gibbs Energy of mixing when the partition 
between the two partitions is removed. 

 
5.7 Air is a mixture of primarily 3 gases with composition:   
 xN2 = 0.78  ,  xO2 = 0.21  ,  xAr = 0.01 

 Calculate the Entropy of mixing when 5 moles of air of the above composition 
 is prepared from the above pure gases. 
 
5.8 The freezing point of 1-butanol is 25.8 oC and its depression constant is 8.2 oC/m.   
 When 4.0 grams of acetonitrile (CH3CN, M = 41) is dissolved in 650 grams  
 of 1-butanol, the freezing point of the mixture is 21.5 oC. 

 Calculate the activity coefficient of acetonitrile in 1-butanol.  
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Chapter 5 

Simple Mixtures
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Partial Molar Quantities

Partial Molar Volume

Imagine adding 1 mole (18 g) of H2O(l) to a very large volume of water.
The volume would increase by 18 cm3, and we would say that

and would call this the Partial Molar Volume of water.

If, instead, we added 1 mole of water to a very large volume of ethanol,
the volume would increase by only 14 cm3 because of packing effects.
Under these conditions, the Partial Molar Volume of water is 14 cm3/mol.  

Thus, the volume increase depends upon the nature of the solution; i.e.
the number of moles of the various components.

In general, the Partial Molar Volume, VJ , of a substance J is defined as:

n' indicates that the numbers of moles of all components
except J are held constant.
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Dependence of VH2O and VEtOH on composition in a binary
water/ethanol solution. 
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For a binary mixture of A and B, the incremental change in volume is
given by:

Integrate this expression under conditions of constant composition so that 
VA and VB are constant, to find that the total volume of the mixture, 
V, is given by:

This is may be generalized to an N component system:

and

n' indicates that all nj  ni are held constant
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Example:  Exer. 5.2(b)

At 20 oC, the density of a 20% by mass solution of Ethanol and Water is
0.97 g/cm3.

Given that the Partial Molar Volume of ethanol in this solution is 
52.2  cm3/mol, what is the Partial Molar Volume of water?

M(EtOH) = 46 g/mol
M(H2O) = 18 g/mol

Hint:  Assume 1000 cm3 of solution.

m(EtOH) = 194 g    n(EtOH) = 4.22 mol
m(H2O) = 776 g    n(H2O) = 43.1 mol

V(H2O) = 18.1 cm3/mol
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Partial Molar Gibbs Energy

We introduced the Partial Molar Gibbs Energy, which is also called
the Chemical Potential (), in Chapter 3.

where: n' indicates that all nj  ni are held constant

If  Pressure and Temperature are held constant, then one has:

Similar to Partial Molar Volumes, this expression can be integrated under
conditions of constant composition (so that the i's remain constant) to yield:
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The Gibbs-Duhem Equation

From above, we have:

if  T, p are constant

We are going to develop an expression relating changes in the chemical
potentials (di) of various components in a mixture. 

We also have:

Taking the differential of the latter expression gives:

The two equations for dG must be equal:

which finally gives: Gibbs-Duhem Equation
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Note: You are not responsible for the derivation..
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which finally gives: Gibbs-Duhem Equation**

Note:  This is just a special case of the Gibbs-Duhem equation, which can be
derived for any Partial Molar Quantities (e.g. the Partial Molar Volume, Vi)

The significance of the Gibbs-Duhem Equation is that the Chemical Potential
of one component of a mixture cannot change independently of the Chemical
Potentials of the other components.

For example, in a binary mixture (components A and B), one has:

This equation shows that if the chemical potential of one component increases,
that of the other component must decrease; e.g.

The Gibbs-Duhem Equation for Chemical Potential and other quantities
has important applications throughout thermodynamics.
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The Thermodynamics of Mixing

The Chemical Potential of a Gas

In Chapter 3, we developed the following equation for the pressure dependence
of the Molar Gibbs Energy of a gas:

or, remembering that   Gm

If we take the standard reference state as po = 1 bar, with (po) = o , then
the chemical potential at any other pressure, p, is:

It is common (and convenient) to leave off the po, giving:
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The Gibbs Energy of Mixing (mixG) of Perfect Gases

Consider two containers at the same temperature and 
pressure, each with a pure gas, A (nA moles) and B (nB moles)

We would like to consider the Gibbs Energy change when we
mix these gases.  The mixture is in a new container, with V = VA + VB , and
total pressure, p = pA + pB .  

The initial Gibbs Energy of the two gases in their separate containers is:

After mixing, the partial pressures of the two gases are pA and pB , with
pA + pB = p.  The final Gibbs Energy of the mixture is:
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Initial:

Final:

Therefore, the Gibbs Energy change of mixing is given by:

With simplification:

We can simplify this further by using:

and Dalton's Law:
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We can simplify this further by using:

and Dalton's Law:

xA mixG/nRT

0.1      -0.33
0.2      -0.50
0.3      -0.61
0.4      -0.67
0.5      -0.69 
0.6      -0.67
0.7      -0.61
0.8      -0.50
0.9      -0.33
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The Entropy of Mixing (mixS) of Perfect Gases

Therefore:  

xA mix/nR

0.1      0.33
0.2      0.50
0.3      0.61
0.4      0.67
0.5      0.69 
0.6      0.67
0.7      0.61
0.8      0.50
0.9      0.33
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The Enthalpy of Mixing (mixH) of Perfect Gases

negative for all xA , xB

positive for all xA , xB

It is not at all surprising the the Enthalpy of Mixing is 0,
because there are no attractive or repulsive forces in Perfect Gases.

Thus, we see that the spontaneous mixing of two gases is an
entropically driven process.
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+

A B

UAA UBB UAB

AB

Ideal Mixture:  UAA  UBB  UAB

Nearly Ideal Mixtures:  Benzene-Toluene
Hexane-Octane

Non-Ideal Mixtures:  Chloroform-Acetone
Ethanol-Water

The Chemical Potential of Liquids

Ideal Solutions:  Raoult's Law
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pA
* pB

* ptot = pA + pB

+

pA = xApA
* xA = Mole Fraction of A in mixture

pB = xBpB
* xB = Mole Fraction of B in mixture

ptot = xApA
* + xBpB

*

Raoult’s Law

pA
* is the vapor pressure above pure liquid A 

pB
* is the vapor pressure above pure liquid B 
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The Chemical Potential in Ideal Solutions

We will use a superscript asterisk (*) to indicate a pure liquid.  Thus
the chemical potential would be denoted as A

* or  A
*(l) 

Because a pure liquid must be in equilibrium with its vapor, the
chemical potential of the liquid is given by:

A
o is the chemical potential of the gas at po = 1 bar 

pA
* is the vapor pressure of the pure liquid 

If another substance (solute) is present in the liquid, the chemical potential
of the liquid is changed to A and its vapor pressure is changed to pA

pure liquid

liquid in solution

pA is the vapor pressure of A in the solution
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pure liquid

liquid in solution

We can combine the equations to eliminate A
o (subtract first from second):

or:

using Raoult's Law

Therefore, an ideal solution is one in which the chemical potential of
each component is given by:
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ptot = xApA
* + xBpB

*

ptot

pB
*

pB

pA
*

pA

The Component Vapor Pressures in an Ideal Solution
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A Nearly Ideal Solution
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Positive Deviations from Raoult’s Law
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Negative Deviations from Raoult’s Law
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Ideal Dilute Solutions

Consider a solution with solvent, A, and solute, B.
If it is an ideal solution, the vapor pressures of solvent and solute are given by:

and

It is found in many real dilute solutions (xB << xA) that, 
while the solvent vapor pressure is given by the expression above,
the solute vapor pressure is still proportional to xB , but the proportionality
constant is not pB

* , but an empirical constant.  

and

This is called Henry's Law, and the Henry's Law constant, KB , is a function
of the nature of the solute, B.
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The Properties of Solutions

Thermodynamics of Mixing of Ideal Solutions

If we have nA moles of A and nB moles of B, then the initial Gibbs Energy 
of the pure liquids before mixing is: 

After mixing, the final Gibbs Energy of the solution is:

It is straightforward to show that the Gibbs Energy of Mixing is:

This is identical to the expression for the Gibbs Energy of Mixing of
Perfect Gases.
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This is identical to the expression for the Gibbs Energy of Mixing of
Perfect Gases.

Similarly, it can be shown that the expressions for
mixS and  mixH are the same as for Perfect Gas mixtures. 

Excess Functions

Often, the mixing properties of Real solutions are discussed in terms of
excess functions; e.g. 

This is discussed in somewhat more detail in the text (Sect. 5.4b), but we 
will not go into excess functions any further.
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Colligative Properties

Colligative properties of a solution are properties which depend only upon
the number of moles of a solute, and not upon its specific nature.

• Vapor Pressure Lowering
When an involatile (e.g. solid) solute is dissolved in a solvent,
the vapor pressure drops below that of the pure solvent.

• Boiling Point Elevation
When an involatile (e.g. solid) solute is dissolved in a solvent, the 
boiling point of the solution is higher than that of the pure solvent.

• Freezing Point Depression
When a solute (usually a  solid) is dissolved in a solvent, the 
freezing point of the solution is lower than that of the pure solvent.

• Osmotic Pressure
Solvent tends to flow from a pure solvent chamber into a solution
chamber until a sufficient pressure (the “Osmotic Pressure”) has
developed to stop further flow.
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Colligative Properties

All four colligative properties are independent of the nature of the 
solute (B), but stem from the fact that the solute will lower the 
chemical potential of the solvent (A):

Freezing Point
Depression

Boiling Point
Elevation

pA
* pB

* ptot = pA + pB

+

pA = xApA
* xA = Mole Fraction of A in mixture

pB = xBpB
* xB = Mole Fraction of B in mixture

ptot = xApA
* + xBpB

*Raoult’s Law:

Vapor Pressure Lowering

In the special (but important) case that the solute, B, is non-volatile, it's
pure vapor pressure will be:  pB*  0

In this case, Raoult's Law reduces to: ptot = pA = xApA
*
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For xA < 1, pA < pA
*
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Application of Raoult's Law:  Determining the Molar Mass 
of a compound.

Example: The vapor pressure of 2-propanol (M=60) is 50.0 Torr at 27 oC,
but fell to 49.6 torr when 8.7 g of an involatile organic compound was dissolved
in 250 g of 2-propanol.

Calculate the Molar Mass of the unknown compound.

xprop = 0.992

nX = 0.034 mol

MX = 260 g/mol 

Pure Solvent

p = pA
* = 1 atm.

T = Tb
o

Solution

P = xApA
* < 1 atm.

T = Tb
o

Will no longer boil at Tb
o.  Must raise 

temperature until P rises back to 1 atm.

Boiling Point Elevation

Tb = Tb - Tb
o = KbmB

It can be shown (numerous texts) that the change in the boiling point, Tb , 
can be expressed as a function of the solute molality, mB .  
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Pure Solvent

Rate(“pop off”) = Rate(“condense”)
T = Tf

o

Solution

Will no longer freeze at Tf
o.  Must lower 

temperature until the two rates are equal.

Rate(“pop off”) > Rate(“condense”)
T = Tf

o

Tf = Tf
o - Tf = KfmB

It has been shown in various texts that the change in the freezing point, Tf , 
can be expressed as a function of the solute molality, mB .  

Freezing Point Depression
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Tb = Tb - Tb
o = KbmB

Tf = Tf
o - Tf = KfmB

It can be shown that the Boiling Point Elevation Constant (aka the Ebullioscopic
constant) and the Freezing Point Depression Constant (Cryscopic constant) are
given by:

and

MA is the solvent Molar Mass
Tb

o and Tf
o are the pure solvent boiling and freezing temperatures

vapHo and fusHo are the solvent enthalpies of vaporization and fusion      

Note that Kb and Kf depend solely upon solvent properties, and independent of 
the particular solute.

Although Kf and Kb can be calculated from the above formulae, the tabulated
values in the literature are the empirical values, taken from experimental 
determination using solutes of known Molar Mass.
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Solvent      Kf Kb

H2O         1.86 K/m   0.51 K/m

Benzene  5.12            2.13

Phenol     7.27           3.04

CCl4 30            4.95

Note that Kf > Kb.  This is because fusHo << vapHo

and

Generally, the tabulated  constants, Kf and Kb , are the empirical values
determined from  measurements with solutes of known Molar Mass. 
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Applications of freezing point depression and boiling point
elevation measurements.

1. Determination of solute Molar Mass

2. Determination of fractional dissociation and equilibrium constants

3. Determination of solute "activity coefficients" (coming up)

mX = 0.112 m = 0.112 mol/kg

kg Nap = 0.25 kg

nX = 0.028 mol

MX = 180 g/mol 

Example: The addition of 5.0 g of an unknown compound to 250 g of
Napthalene lowered the freezing point of the solvent by 0.78 oC

Calculate the Molar Mass of the unknown compound.

Kf (Nap) = 6.94 K/m 
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Osmotic Pressure

Wine bladder

Lake
Pokeytenoqua

H2O
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Semipermeable
Membrane

Semipermeable
Membrane

H2O

 = dgh
= Osmotic Pressure

Static Osmometry:
Allow the two chambers
to equilibrate.
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Dynamic Osmometry: Apply pressure, , to prevent movement
of solvent between chambers.

P P + 

Semipermeable
Membrane

H2O
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It can be
shown that:  V = nBRT

 = (nB/V) RT

 = Osmotic Pressure

V  = Volume of solution

nB = Moles of Solute

R  = Gas Constant

T  = Temperature (in K)

Alternate form:

 = [B]RT

[B] = Solute Molarity

Chapter 7 : Slide 38
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A Sensitivity Comparison

Let's say that a sugar solution is prepared by dissolving 1 g of sucrose
(M = 342) in 1 L (1 kg) of water.

The Molarity (molality) of the solution is:

From Kf = 1.86 K/m, one has Tf = -0.005 oC

From Kb = 0.51 K/m, one has Tb = 100.0015 oC 

Let's calculate  (25 oC)

In contrast to freezing point depression, and boiling point elevation, which
are too small to be measured experimentally, the osmotic pressure can be 
measured very accurately.
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Application:  Determination of Molar Mass from Osmotic Pressure

We will show a straightforward method for determining Molar Masses from
measured values of .  The method is very similar to that used to calculate
Molar Mass from Freezing Point Depression or Boiling Point Elevation.

Afterwards, I will comment on the method presented in the text, which
is useful if one wishes very accurate determinations, but is not straightforward.

Example:  When 2.0 g of Hemoglobin (Hb) is dissolved in 100 mL
of solution, the osmotic pressure is 5.72 torr at 25 oC.

Calculate the Molar Mass of Hemoglobin. 1 kPa = 7.50 torr
R = 8.31 kPa-L/mol-K

Procedure:

1. Calculate the Molarity of the unknown, [X] from  = [X]RT

2. Determine the number of moles, nX , using [X] and the solution volume

3. Determine the Molar Mass from:  MX =massX/nX
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Example:  When 2.0 g of Hemoglobin (Hb) is dissolved in 100 mL
of solution, the osmotic pressure is 5.72 torr at 25 oC.

Calculate the Molar Mass of Hemoglobin. 1 kPa = 7.50 torr
R = 8.31 kPa-L/mol-KProcedure:

1. Calculate the Molarity of the unknown, [X] from  = [X]RT

2. Determine the number of moles, nX , using [X] and the solution volume

3.    Determine the Molar Mass from:  MX =massX/nX

Note:  The Boiling Point elevation and Freezing Point depression of the above
solution would be immeasurably small.  Therefore, these techniques are useless
to determine Molar Masses of polymers.
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Homework:  When 3.0 g of an unknown compound is placed in 250 mL of
solution at 30 oC, the osmotic pressure is 62.4 kPa.

Calculate the Molar Mass of the unknown compound. 

R = 8.31 kPa-L/mol-K

[X] = 2.48x10-2 mol/L

nX = 6.20x10-3 mol

MX = 480 g/mol    

In contrast, the freezing point depression (in aqueous solution) would be
~0.05 oC, which could only be measured to approximately 10-20% accuracy.

Note:  The osmotic pressure,  = 62.4 kPa = 470 mm Hg  0.50 meters,
can be measured to 0.1 % accuracy very easily.

Note, once again, that Osmotic Pressure measurements are much more 
sensitive than the other colligative properties.
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FYI:  Very Accurate Determination of Molar Masses from 

Actually, the formula,  = [B]RT, is only accurate in dilute solution.

In more concentrated solutions, one has:

It is shown in the text (Example 5.4) that, writing  = gh (hydrostatic
pressure), and c = mass/Volume, one can derive the equation:

Then, an accurate value for MX can be obtained from the intercept of a plot
of h/c vs. c
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Real Solutions:  Activities

Ideal Solutions

Earlier in the chapter, we showed that the solvent (A) and solute (B) 
chemical potentials are given by:

Solvent:  

Solute:

Real Solutions

In solutions which are not ideal, the relatively simple formulae for the solvent
and solute chemical potentials can be retained by replacing the mole fractions
by activities (ai):

Solvent:  

Solute:
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Real Solutions:  Activities

Real Solutions

In solutions which are not ideal, the relatively simple formulae for the solvent
and solute chemical potentials can be retained by replacing the mole fractions
by activities (ai):

Solvent:  

Solute:

The activities can be related to the mole fractions by:
aA = A xA and aB = B xB.

A and B are the activity coefficients, and can be calculated from
thermodynamic measurements.  Their deviation from i =1 characterizes
the extent of non-ideality in a system.
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Solute Activities in terms of molalities

In a dilute solution, it is more common to characterize solutes by their
molality, rather than mole fraction in solution.

It is straightforward to show that, in a dilute solution, the molality, mB,
and mole fraction, xB , are directly proportional:

(nB << nA in dilute solution) 

If we assume an amount of solution containing 1 kg = 1000 g of solvent,
then:  nB = mB and nA = 1000/MA (solvent Molar Mass).
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The solute chemical potential of an ideal solution, written in terms of molality
rather than mole fraction, is: 

B
+ is different from the reference state, B

o ,
when using mole fractions.

For a non-ideal solute, we can then replace mB by the activity,  aB= BmB
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Activity Coefficients from Colligative Property Measurements

Earlier we discussed that the freezing point depression and boiling point elevation
of a solution (assumed ideal) are given by:

If the solution is non-ideal, the solute molality, mB , is replaced by its
activity, aB

Thus, the activity coefficient, B , can be determined by a comparison of
the measured colligative property with the value expected for an ideal solution:
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Example:  When 25 g of Napthalene (C10H8 , M = 128) is placed in 
500 g of benzene (Kf = 5.12 oC/m. Tf

o = 5.5 oC ), the freezing point of the
solution is 3.9 oC.

What is the activity coefficient of napthalene in this solution?


