SIMPLE MIXTURES

Chapter 5 Outline

HW: Questions are below. Solutions are in separate file on the course web site.
Sect. Title and Comments

Required? YES

1. Partial Molar Quantities
2. The Thermodynamics of Mixing YES
3. The Chemical Potentials of Liquids YES
4. Liquid Mixtures MOST
We will not cover Sect. 4.b on Excess Functions and Regular Solutions.
5. Colligative Properties YES
6. Vapor Pressure Diagrams NO
7. Temperature-Compositon Diagrams NO
8. Liquid-Liquid Phase Diagrams NO
9. Liquid-Solid Phase Diagrams NO
10. The Solvent Activity
I’ll just discuss real solutions briefly, introducing activities and activity coefficients. We won't perform any calculations on real solutions.
11. The Solute Activity
I'll just discuss real solutions briefly, introducing activities and activity coefficients. We won't perform any calculations on real solutions.
12. The Activities of Regular Solutions NO
13.. The Activities of Ions in Solution NO

Chapter 5 Homework Questions

5.1 At $25^{\circ} \mathrm{C}$, the density of a 50% by mass of an Ethanol-Water solution is $0.914 \mathrm{~g} / \mathrm{cm}^{3}$. Given that the Partial Molar Volume of water in the solution is $17.4 \mathrm{~cm}^{3} / \mathrm{mol}$, calculate the Partial Molar Volume of Ethanol in the solution.
Note: $\mathrm{M}($ Ethanol $)=46 . \mathrm{g} / \mathrm{mol}, \mathrm{M}($ Water $)=18 . \mathrm{g} / \mathrm{mol}$.
5.2 The vapor pressure of pure benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{M}=78\right)$ is 53.3 kPa at $60^{\circ} \mathrm{C}$. When 19. grams of an involatile organic compound is dissolved in 500 g of Benzene, the vapor pressure drops to 51.5 kPa .
Calculate the Molar Mass of the organic compound.
5.3 The freezing point of pure $\mathrm{CCl}_{4}(\mathrm{liq})$ is $-22.9^{\circ} \mathrm{C}$ and the Freezing Point Depression constant is $30^{\circ} \mathrm{C}$. When 100 grams of an unknown organic compound is added to 750 grams of $\mathrm{CCl}_{4}(\mathrm{l})$, the freezing point of the mixture is $-33.4^{\circ} \mathrm{C}$
Calculate the Molar Mass of the organic compound.
5.4 The boiling point of pure benzene is $80.1^{\circ} \mathrm{C}$ and the Boiling Point Elevation constant is $2.13^{\circ} \mathrm{C} / \mathrm{m}$. When a sample of napthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ is dissolved in 600 . grams of Benzene, the boiling point boiling point of the mixture is $81.3^{\circ} \mathrm{C}$.

How many grams of napthalene were dissolved in the benzene.
5.5 When 0.15 grams of an unknown compound is dissolved in 100 mL of aqueous solution, the measured osmotic pressure of the solution is 0.65 kPa at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the unknown compound.
5.6 Consider two containers separated by a partition. Container A is of volume 5 L , and contains $\mathrm{N}_{2}(\mathrm{~g})$ at 2.0 atm and $30^{\circ} \mathrm{C}$. Container B is of volume 10 L , and contains $\mathrm{H}_{2}(\mathrm{~g})$ at 2.0 atm and $30^{\circ} \mathrm{C}$.

Calculate the Entropy of mixing and the Gibbs Energy of mixing when the partition between the two partitions is removed.
5.7 Air is a mixture of primarily 3 gases with composition:
$\mathrm{XN} 2=0.78, \mathrm{xO} 2=0.21, \mathrm{xAr}^{2}=0.01$
Calculate the Entropy of mixing when 5 moles of air of the above composition is prepared from the above pure gases.
5.8 The freezing point of 1-butanol is $25.8^{\circ} \mathrm{C}$ and its depression constant is $8.2^{\circ} \mathrm{C} / \mathrm{m}$. When 4.0 grams of acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{M}=41\right)$ is dissolved in 650 grams of 1-butanol, the freezing point of the mixture is $21.5^{\circ} \mathrm{C}$.

Calculate the activity coefficient of acetonitrile in 1-butanol.

Chapter 5

Simple Mixtures

Partial Molar Quantities

Partial Molar Volume

Imagine adding 1 mole $(18 \mathrm{~g})$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ to a very large volume of water. The volume would increase by $18 \mathrm{~cm}^{3}$, and we would say that
$\frac{d V}{d n}=18 \mathrm{~cm}^{3} / \mathrm{mol}$ and would call this the Partial Molar Volume of water.
If, instead, we added 1 mole of water to a very large volume of ethanol, the volume would increase by only $14 \mathrm{~cm}^{3}$ because of packing effects. Under these conditions, the Partial Molar Volume of water is $14 \mathrm{~cm}^{3} / \mathrm{mol}$.

Thus, the volume increase depends upon the nature of the solution; i.e. the number of moles of the various components.

In general, the Partial Molar Volume, V_{J}, of a substance J is defined as:
$V_{J}=\left(\frac{\partial V}{\partial n_{J}}\right)_{p, T, n^{\prime}} \begin{aligned} & \mathrm{n} \text { ' indicates that the numbers of moles of all components } \\ & \text { except } \mathrm{J} \text { are held constant. }\end{aligned}$

Dependence of $\mathrm{V}_{\mathrm{H} 2 \mathrm{O}}$ and $\mathrm{V}_{\text {EtOH }}$ on composition in a binary water/ethanol solution.

For a binary mixture of A and B, the incremental change in volume is given by:
$d V=\left(\frac{\partial V}{\partial n_{A}}\right)_{T, p, n_{B}} d n_{A}+\left(\frac{\partial V}{\partial n_{B}}\right)_{T, p, n_{A}} d n_{B}=V_{A} d n_{A}+V_{B} d n_{B}$
Integrate this expression under conditions of constant composition so that V_{A} and V_{B} are constant, to find that the total volume of the mixture,
V , is given by:
$V=V_{A} n_{A}+V_{B} n_{B}$
This is may be generalized to an N component system:
$d V=\sum_{J=1}^{N}\left(\frac{\partial V}{\partial n_{J}}\right)_{T, p, n^{\prime}} d n_{J}=\sum_{J=1}^{N} V_{J} d n_{J}=V_{1} d n_{1}+V_{2} d n_{2}+\ldots$
n^{\prime} indicates that all $\mathrm{n}_{\mathrm{j}} \neq \mathrm{n}_{\mathrm{i}}$ are held constant
and $V=\sum_{J=1}^{N} V_{J} n_{J}=V_{1} n_{1}+V_{2} n_{2}+\ldots$

Example: Exer. 5.2(b)

At $20^{\circ} \mathrm{C}$, the density of a 20% by mass solution of Ethanol and Water is $0.97 \mathrm{~g} / \mathrm{cm}^{3}$.
Given that the Partial Molar Volume of ethanol in this solution is $52.2 \mathrm{~cm}^{3} / \mathrm{mol}$, what is the Partial Molar Volume of water?
$\begin{array}{ll}\text { Hint: Assume } 1000 \mathrm{~cm}^{3} \text { of solution. } & \mathrm{M}(\mathrm{EtOH})=46 \mathrm{~g} / \mathrm{mol} \\ & \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol}\end{array}$

$$
\begin{aligned}
& \mathrm{m}(\mathrm{EtOH})=194 \mathrm{~g} \rightarrow \mathrm{n}(\mathrm{EtOH})=4.22 \mathrm{~mol} \\
& \mathrm{~m}\left(\mathrm{H}_{2} \mathrm{O}\right)=776 \mathrm{~g} \rightarrow \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=43.1 \mathrm{~mol} \\
& \mathrm{~V}\left(\mathrm{H}_{2} \mathrm{O}\right)=18.1 \mathrm{~cm}^{3} / \mathrm{mol}
\end{aligned}
$$

Partial Molar Gibbs Energy

We introduced the Partial Molar Gibbs Energy, which is also called the Chemical Potential (μ), in Chapter 3.
$d G=-S d T+V d p+\sum_{i=1}^{N} \mu_{i} d n_{i}$
where: $\quad \mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n^{\prime}} \mathrm{n}^{\prime}$ indicates that all $\mathrm{n}_{\mathrm{j}} \neq \mathrm{n}_{\mathrm{i}}$ are held constant
If Pressure and Temperature are held constant, then one has:
$d G=\sum_{i=1}^{N} \mu_{i} d n_{i}=\mu_{1} d n_{1}+\mu_{2} d n_{2}+\ldots$
Similar to Partial Molar Volumes, this expression can be integrated under conditions of constant composition (so that the μ_{i} 's remain constant) to yield:
$G=\sum_{i=1}^{N} \mu_{i} n_{i}=\mu_{1} n_{1}+\mu_{2} n_{2}+\ldots$

The Gibbs-Duhem Equation

We are going to develop an expression relating changes in the chemical potentials $\left(\mathrm{d} \mu_{\mathrm{i}}\right)$ of various components in a mixture.
From above, we have: $d G=-S d T+V d p+\sum_{i=1}^{N} \mu_{i} d n_{i}=\sum_{i=1}^{N} \mu_{i} d n_{i}$
We also have: $G=\sum_{i=1}^{N} \mu_{i} n_{i} \quad$ if T, p are constant
Taking the differential of the latter expression gives:
$d G=\sum_{i=1}^{N} \mu_{i} d n_{i}+\sum_{i=1}^{N} n_{i} d \mu_{i}=\mu_{1} d n_{1}+n_{1} d \mu_{1}+\mu_{2} d n_{2}+n_{2} d \mu_{2}+\ldots$
The two equations for dG must be equal:
$\sum_{i=1}^{N} d n_{i}+\sum_{i=1}^{N} n_{i} d \mu_{i}=\sum_{i=1}^{N} \mu_{i} d n_{i}$
which finally gives: $\sum_{i=1}^{N} n_{i} d \mu_{i}=0 \quad$ Gibbs-Duhem Equation
Note: You are not responsible for the derivation..
which finally gives: $\sum_{i=1}^{N} n_{i} d \mu_{i}=0 \quad$ Gibbs-Duhem Equation**
The significance of the Gibbs-Duhem Equation is that the Chemical Potential of one component of a mixture cannot change independently of the Chemical Potentials of the other components.

For example, in a binary mixture (components A and B), one has:
$n_{A} d \mu_{A}+n_{B} d \mu_{B}=0$
This equation shows that if the chemical potential of one component increases, that of the other component must decrease; e.g.
$d \mu_{B}=-\frac{n_{A}}{n_{B}} d \mu_{A}$
The Gibbs-Duhem Equation for Chemical Potential and other quantities has important applications throughout thermodynamics.

Note: This is just a special case of the Gibbs-Duhem equation, which can be derived for any Partial Molar Quantities (e.g. the Partial Molar Voluyane : Wblide 8

The Thermodynamics of Mixing

The Chemical Potential of a Gas
In Chapter 3, we developed the following equation for the pressure dependence of the Molar Gibbs Energy of a gas:
$G_{m}\left(p_{f n}\right)=G_{m}\left(p_{\text {pixt }}\right)+R T \ln \left(p_{\text {fn }} / p_{\text {pint }}\right)$ or, remembering that $\mu \equiv \mathrm{G}_{\mathrm{m}}$
$\mu\left(p_{\text {fnn }}\right)=\mu\left(p_{\text {init }}\right)+R T \ln \left(p_{\text {fn }} / p_{\text {initit }}\right)$
If we take the standard reference state as $p^{0}=1$ bar, with $\mu\left(p^{0}\right)=\mu^{0}$, then the chemical potential at any other pressure, p, is:
$\mu=\mu^{\circ}+R T \ln \left(p / p^{o}\right)$
It is common (and convenient) to leave off the p^{0}, giving:
$\mu=\mu^{o}+R T \ln p$

The Gibbs Energy of Mixing ($\Delta_{\text {mix }} G$) of Perfect Gases
Consider two containers at the same temperature and pressure, each with a pure gas, A (n_{A} moles) and B (n_{B} moles)

We would like to consider the Gibbs Energy change when we mix these gases. The mixture is in a new container, with $\mathrm{V}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}$, and total pressure, $p=p_{A}+p_{B}$.

The initial Gibbs Energy of the two gases in their separate containers is:

$$
G_{\text {init }}=n_{A} \mu_{A}+n_{B} \mu_{B}=n_{A}\left(\mu_{A}^{o}+R T \ln p\right)+n_{B}\left(\mu_{B}^{o}+R T \ln p\right)
$$

After mixing, the partial pressures of the two gases are p_{A} and p_{B}, with $\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}=\mathrm{p}$. The final Gibbs Energy of the mixture is:

$$
G_{f n}=n_{A} \mu_{A}+n_{B} \mu_{B}=n_{A}\left(\mu_{A}^{o}+R T \ln p_{A}\right)+n_{B}\left(\mu_{B}^{o}+R T \ln p_{B}\right)
$$

Initial: $\quad G_{\text {init }}=n_{A}\left(\mu_{A}^{o}+R T \ln p\right)+n_{B}\left(\mu_{B}^{o}+R T \ln p\right)$
Final: $\quad G_{f n}=n_{A}\left(\mu_{A}^{o}+R T \ln p_{A}\right)+n_{B}\left(\mu_{B}^{o}+R T \ln p_{B}\right)$
Therefore, the Gibbs Energy change of mixing is given by:

$$
\begin{aligned}
\Delta_{\text {mix }} G & =G_{\text {fin }}-G_{\text {init }} \\
& =\left[n_{A}\left(\mu_{A}^{o}+R T \ln p_{A}\right)+n_{B}\left(\mu_{B}^{\circ}+R T \ln p_{B}\right)\right] \\
& -\left[n_{A}\left(\mu_{A}^{\circ}+R T \ln p\right)+n_{B}\left(\mu_{B}^{\circ}+R T \ln p\right)\right]
\end{aligned}
$$

With simplification:

$$
\begin{aligned}
\Delta_{\text {mix }} G & =n_{A} R T\left[\ln p_{A}-\ln p\right]+n_{B} R T\left[\ln p_{B}-\ln p\right] \\
& =n_{A} R T \ln \left(p_{A} / p\right)+n_{B} R T \ln \left(p_{B} / p\right)
\end{aligned}
$$

We can simplify this further by using: $n_{A}=x_{A} n$ and $n_{B}=x_{B} n$

$$
\text { and Dalton's Law: } x_{A}=p_{A} / p \text { and } x_{B}=p_{B} / p
$$

$$
\Delta_{m i x} G=n_{A} R T \ln \left(p_{A} / p\right)+n_{B} R T \ln \left(p_{B} / p\right)
$$

We can simplify this further by using: $n_{A}=x_{A} n$ and $n_{B}=x_{B} n$
 and Dalton's Law: $x_{A}=p_{A} / p$ and $x_{B}=p_{B} / p$ $\Delta_{m i x} G=n R T\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]$

x_{A}	$\Delta_{\text {mix }} \mathrm{G} / \mathrm{nRT}$
0.1	-0.33
0.2	-0.50
0.3	-0.61
0.4	-0.67
$\mathbf{0 . 5}$	$\mathbf{- 0 . 6 9}$
0.6	-0.67
0.7	-0.61
0.8	-0.50
0.9	-0.33

The Entropy of Mixing ($\Delta_{\text {mix }} \mathrm{S}$) of Perfect Gases
$d G=-S d T+V d p+\mu_{A} d n_{A}+\mu_{B} d n_{B} \quad \longrightarrow \quad-S=\left(\frac{\partial G}{\partial T}\right)_{p, n_{A}, n_{B}}$

Therefore: $\Delta_{m i x} S=-\left(\frac{\partial \Delta_{m i x} G}{\partial T}\right)_{p, n_{A}, n_{B}}=-\left[\frac{\partial}{\partial T}\left(n R T\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]\right)\right]_{p, n_{A}, n_{B} p, n_{A}, n_{B}}$

$$
\Delta_{m i x} S=-n R\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]
$$

x_{A}	$\Delta_{\text {mix }} / n \mathrm{n}$
0.1	0.33
0.2	0.50
0.3	0.61
0.4	0.67
$\mathbf{0 . 5}$	$\mathbf{0 . 6 9}$
0.6	0.67
0.7	0.61
0.8	0.50
0.9	0.33

The Enthalpy of Mixing $\left(\Delta_{\text {mix }} H\right)$ of Perfect Gases
$\Delta_{m i x} G=n R T\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right] \quad$ negative for all $\mathrm{x}_{\mathrm{A}}, \mathrm{x}_{\mathrm{B}}$

$\Delta_{m i x} S=-n R\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right] \quad$ positive for all $\mathrm{x}_{\mathrm{A}}, \mathrm{x}_{\mathrm{B}}$
$\Delta_{m \dot{x}} G=\Delta_{m \dot{x}} H-T \Delta_{m \dot{x}} S \rightarrow \Delta_{m \dot{x}} H=\Delta_{m \dot{x}} G+T \Delta_{m \dot{x}} S$
$\Delta_{m \dot{x}} H=n R T\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]+T\left\{-n R\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]\right\}$
$\Delta_{m i x} H=0 \quad$ It is not at all surprising the the Enthalpy of Mixing is 0, because there are no attractive or repulsive forces in Perfect Gases.

Thus, we see that the spontaneous mixing of two gases is an entropically driven process.

The Chemical Potential of Liquids

Ideal Solutions: Raoult's Law

Ideal Mixture: $\mathrm{U}_{\mathrm{AA}} \approx \mathrm{U}_{\mathrm{BB}} \approx \mathrm{U}_{\mathrm{AB}}$

Nearly Ideal Mixtures: Benzene-Toluene Hexane-Octane

Non-Ideal Mixtures: Chloroform-Acetone
Ethanol-Water

$\mathrm{P}_{\mathrm{A}}{ }^{*}$ is the vapor pressure above pure liquid A
$\mathrm{P}_{\mathrm{B}}{ }^{*}$ is the vapor pressure above pure liquid B
$\mathrm{p}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{*} \quad \mathrm{x}_{\mathrm{A}}=$ Mole Fraction of A in mixture
$\mathrm{p}_{\mathrm{B}}=\mathrm{x}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{*} \quad \mathrm{x}_{\mathrm{B}}=$ Mole Fraction of B in mixture

$$
\mathrm{p}_{\mathrm{tot}}=\mathrm{x}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{*}+\mathrm{x}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{*}
$$

Raoult's Law

The Chemical Potential in Ideal Solutions

We will use a superscript asterisk (${ }^{*}$) to indicate a pure liquid. Thus the chemical potential would be denoted as $\mu_{\mathrm{A}}{ }^{*}$ or $\mu_{\mathrm{A}}{ }^{*}(\mathrm{l})$

Because a pure liquid must be in equilibrium with its vapor, the chemical potential of the liquid is given by:

$$
\mu_{A}^{*}=\mu_{A}^{*}(l)=\mu_{A}(g)=\mu_{A}^{o}+R T \ln p_{A}^{*} \quad \text { pure liquid }
$$

$\mu_{\mathrm{A}}{ }^{0}$ is the chemical potential of the gas at $\mathrm{p}^{0}=1$ bar
$\mathrm{p}_{\mathrm{A}}{ }^{*}$ is the vapor pressure of the pure liquid

If another substance (solute) is present in the liquid, the chemical potential of the liquid is changed to μ_{A} and its vapor pressure is changed to p_{A}

$$
\mu_{A}=\mu_{A}^{o}+R T \ln p_{A} \quad \text { liquid in solution }
$$

p_{A} is the vapor pressure of A in the solution

$$
\begin{array}{ll}
\mu_{A}^{*}=\mu_{A}^{o}+R T \ln p_{A}^{*} & \text { pure liquid } \\
\mu_{A}=\mu_{A}^{o}+R T \ln p_{A} & \text { liquid in solution }
\end{array}
$$

We can combine the equations to eliminate $\mu_{\mathrm{A}}{ }^{\circ}$ (subtract first from second):

$$
\mu_{A}-\mu_{A}^{*}=R T \ln p_{A}-R T \ln p_{A}^{*}
$$

or: $\quad \mu_{A}=\mu_{A}^{*}+R T \ln \left(p_{A} / p_{A}^{*}\right)=\mu_{A}^{*}+R T \ln x_{A}$
using Raoult's Law

Therefore, an ideal solution is one in which the chemical potential of each component is given by:

$$
\mu_{i}=\mu_{i}^{*}+R T \ln x_{i}
$$

The Component Vapor Pressures in an Ideal Solution

Positive Deviations from Raoult's Law

Negative Deviations from Raoult's Law

Ideal Dilute Solutions

Consider a solution with solvent, A , and solute, B .
If it is an ideal solution, the vapor pressures of solvent and solute are given by:

$$
\begin{aligned}
p_{A} & =x_{A} p_{A}^{*} \\
\text { and } p_{B} & =x_{B} p_{B}^{*}
\end{aligned}
$$

It is found in many real dilute solutions ($\mathrm{x}_{\mathrm{B}} \ll \mathrm{X}_{\mathrm{A}}$) that, while the solvent vapor pressure is given by the expression above, the solute vapor pressure is still proportional to x_{B}, but the proportionality constant is not $\mathrm{p}_{\mathrm{B}}{ }^{*}$, but an empirical constant.

$$
p_{A}=x_{A} p_{A}^{*}
$$

and $p_{B}=x_{B} K_{B}$
This is called Henry's Law, and the Henry's Law constant, K_{B}, is a function of the nature of the solute, B.

The Properties of Solutions

Thermodynamics of Mixing of Ideal Solutions

If we have n_{A} moles of A and n_{B} moles of B, then the initial Gibbs Energy of the pure liquids before mixing is:

$$
G_{\text {init }}=n_{A} \mu_{A}^{*}+n_{B} \mu_{B}^{*}
$$

After mixing, the final Gibbs Energy of the solution is:

$$
G_{f n n}=n_{A} \mu_{A}+n_{B} \mu_{B}=n_{A}\left[\mu_{A}^{*}+R T \ln x_{A}\right]+n_{B}\left[\mu_{B}^{*}+R T \ln x_{B}\right]
$$

It is straightforward to show that the Gibbs Energy of Mixing is:
$\Delta_{m i x} G=G_{f i n}-G_{\text {init }}=n R T\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]$
This is identical to the expression for the Gibbs Energy of Mixing of Perfect Gases.
$\Delta_{m \dot{x}} G=n R T\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]$
This is identical to the expression for the Gibbs Energy of Mixing of Perfect Gases.

Similarly, it can be shown that the expressions for
$\Delta_{\text {mix }} \mathrm{S}$ and $\Delta_{\text {mix }} \mathrm{H}$ are the same as for Perfect Gas mixtures.
$\Delta_{m i x} S=-n R\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]$
$\Delta_{\text {mix }} H=0$

Excess Functions

Often, the mixing properties of Real solutions are discussed in terms of excess functions; e.g.
$S^{E}=\Delta_{m \dot{x}} S(\exp)-\Delta_{m \dot{x}} S($ ideal $)=\Delta_{m \dot{x}} S(\exp)-n R\left[x_{A} \ln x_{A}+x_{B} \ln x_{B}\right]$
This is discussed in somewhat more detail in the text (Sect. 5.4b), but we will not go into excess functions any further.

Colligative Properties

Colligative properties of a solution are properties which depend only upon the number of moles of a solute, and not upon its specific nature.

- Vapor Pressure Lowering

When an involatile (e.g. solid) solute is dissolved in a solvent, the vapor pressure drops below that of the pure solvent.

- Boiling Point Elevation

When an involatile (e.g. solid) solute is dissolved in a solvent, the boiling point of the solution is higher than that of the pure solvent.

- Freezing Point Depression

When a solute (usually a solid) is dissolved in a solvent, the freezing point of the solution is lower than that of the pure solvent.

- Osmotic Pressure

Solvent tends to flow from a pure solvent chamber into a solution chamber until a sufficient pressure (the "Osmotic Pressure") has developed to stop furthewflelert: Slide 26

Colligative Properties

All four colligative properties are independent of the nature of the solute (B), but stem from the fact that the solute will lower the chemical potential of the solvent (A):

$$
\mu_{A}=\mu_{A}^{*}+R T \ln x_{A}<\mu_{A}^{*}
$$

Freezing Point Depression

Vapor Pressure Lowering

$$
\begin{array}{ll}
\mathrm{p}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{*} & \mathrm{x}_{\mathrm{A}}=\text { Mole Fraction of } \mathrm{A} \text { in mixture } \\
\mathrm{p}_{\mathrm{B}}=\mathrm{x}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{*} & \mathrm{x}_{\mathrm{B}}=\text { Mole Fraction of } \mathrm{B} \text { in mixture }
\end{array}
$$

Raoult's Law: $\mathrm{P}_{\text {tot }}=\mathrm{x}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{*}+\mathrm{x}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{*}$
In the special (but important) case that the solute, B , is non-volatile, it's pure vapor pressure will be: $\mathrm{p}_{\mathrm{B}}{ }^{*} \approx 0$

In this case, Raoult's Law reduces to: $\mathrm{p}_{\text {tot }}=\mathrm{p}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{*}$
For $\mathrm{x}_{\mathrm{A}}<1, \mathrm{p}_{\mathrm{A}}<\mathrm{p}_{\mathrm{A}}{ }^{*}$

Application of Raoult's Law: Determining the Molar Mass

 of a compound.Example: The vapor pressure of 2-propanol ($\mathrm{M}=60$) is 50.0 Torr at $27^{\circ} \mathrm{C}$, but fell to 49.6 torr when 8.7 g of an involatile organic compound was dissolved in 250 g of 2-propanol.

Calculate the Molar Mass of the unknown compound.

$$
\begin{aligned}
& \mathrm{x}_{\text {prop }}=0.992 \\
& \mathrm{n}_{\mathrm{X}}=0.034 \mathrm{~mol} \\
& \mathrm{M}_{\mathrm{X}}=260 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Boiling Point Elevation

Pure Solvent

$\mathrm{T}=\mathrm{T}_{\mathrm{b}}{ }^{0}$
$\mathrm{p}=\mathrm{p}_{\mathrm{A}}{ }^{*}=1 \mathrm{~atm}$.

Solution

$\mathrm{T}=\mathrm{T}_{\mathrm{b}}{ }^{0}$
$\mathrm{P}=\mathrm{x}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{*}<1 \mathrm{~atm}$.
Will no longer boil at $\mathrm{T}_{\mathrm{b}}{ }^{0}$. Must raise temperature until P rises back to 1 atm .

It can be shown (numerous texts) that the change in the boiling point, $\Delta \mathrm{T}_{\mathrm{b}}$, can be expressed as a function of the solute molality, m_{B}.

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}{ }^{\mathrm{o}}=\mathrm{K}_{\mathrm{b}} \mathrm{~m}_{\mathrm{B}}
$$

Freezing Point Depression

Pure Solvent

$\mathrm{T}=\mathrm{T}_{\mathrm{f}}{ }^{0}$
Rate("pop off") = Rate("condense") Rate("pop off") > Rate("condense")
Will no longer freeze at $\mathrm{T}_{\mathrm{f}}{ }^{0}$. Must lower temperature until the two rates are equal.
It has been shown in various texts that the change in the freezing point, $\Delta \mathrm{T}_{\mathrm{f}}$, can be expressed as a function of the solute molality, m_{B}.

$$
\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}{ }^{0}-\mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m}_{\mathrm{B}}
$$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}{ }^{0}=\mathrm{K}_{\mathrm{b}} \mathrm{~m}_{\mathrm{B}} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}{ }^{0}-\mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m}_{\mathrm{B}}
\end{aligned}
$$

It can be shown that the Boiling Point Elevation Constant (aka the Ebullioscopic constant) and the Freezing Point Depression Constant (Cryscopic constant) are given by:

$$
K_{b}=\frac{M_{A} R\left(T_{b}^{o}\right)^{2}}{1000 \Delta_{\text {vap }} H^{o}} \text { and } K_{f}=\frac{M_{A} R\left(T_{f}^{o}\right)^{2}}{1000 \Delta_{\text {fus }} H^{o}}
$$

M_{A} is the solvent Molar Mass
$\mathrm{T}_{\mathrm{b}}{ }^{0}$ and $\mathrm{T}_{\mathrm{f}}{ }^{0}$ are the pure solvent boiling and freezing temperatures
$\Delta_{\text {vap }} \mathrm{H}^{0}$ and $\Delta_{\text {fus }} \mathrm{H}^{0}$ are the solvent enthalpies of vaporization and fusion
Note that K_{b} and K_{f} depend solely upon solvent properties, and independent of the particular solute.

Although K_{f} and K_{b} can be calculated from the above formulae, the tabulated values in the literature are the empirical values, taken from experimental determination using solutes of known Molar Mass.

Solvent	K_{f}	K_{b}
$\mathrm{H}_{2} \mathrm{O}$	$1.86 \mathrm{~K} / \mathrm{m}$	$0.51 \mathrm{~K} / \mathrm{m}$
Benzene	5.12	2.13
Phenol	7.27	3.04
CCl_{4}	30	4.95

Note that $\mathrm{K}_{\mathrm{f}}>\mathrm{K}_{\mathrm{b}}$. This is because $\Delta_{\text {fus }} \mathrm{H}^{0} \ll \Delta_{\text {vap }} \mathrm{H}^{0}$

$$
K_{b}=\frac{M_{A} R\left(T_{b}^{o}\right)^{2}}{1000 \Delta_{\text {vap }} H^{o}} \text { and } K_{f}=\frac{M_{A} R\left(T_{f}^{o}\right)^{2}}{1000 \Delta_{\text {fus }} H^{o}}
$$

Generally, the tabulated constants, K_{f} and K_{b}, are the empirical values determined from measurements with solutes of known Molar Mass.

Applications of freezing point depression and boiling point elevation measurements.

1. Determination of solute Molar Mass
2. Determination of fractional dissociation and equilibrium constants
3. Determination of solute "activity coefficients" (coming up)

Example: The addition of 5.0 g of an unknown compound to 250 g of Napthalene lowered the freezing point of the solvent by $0.78^{\circ} \mathrm{C}$

Calculate the Molar Mass of the unknown compound.

$$
\mathrm{K}_{\mathrm{f}}(\mathrm{Nap})=6.94 \mathrm{~K} / \mathrm{m}
$$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{X}}=0.112 \mathrm{~m}=0.112 \mathrm{~mol} / \mathrm{kg} \\
& \mathrm{~kg} \mathrm{Nap}=0.25 \mathrm{~kg} \\
& \mathrm{n}_{\mathrm{X}}=0.028 \mathrm{~mol} \\
& \mathrm{M}_{\mathrm{X}}=180 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Osmotic Pressure

Dynamic Osmometry: Apply pressure, $П$, to prevent movement of solvent between chambers.

It can be shown that: $\Pi \mathrm{V}=\mathrm{n}_{\mathrm{B}} \mathrm{RT}$
Π = Osmotic Pressure
$\mathrm{V}=$ Volume of solution
$\mathrm{n}_{\mathrm{B}}=$ Moles of Solute
R = Gas Constant
$\mathrm{T}=$ Temperature (in K)
Alternate form: $\Pi=\left(n_{B} / V\right) R T$

$$
\Pi=[B] \mathrm{RT}
$$

[B] = Solute Molarity

A Sensitivity Comparison

Let's say that a sugar solution is prepared by dissolving 1 g of sucrose ($\mathrm{M}=342$) in $1 \mathrm{~L}(\approx 1 \mathrm{~kg})$ of water.
The Molarity (\approx molality) of the solution is:
$[$ Suc $] \approx m_{\text {Suc }}=\frac{1 \mathrm{~g} / 342 \mathrm{~g} / \mathrm{mol}}{1 \mathrm{~L}}=2.92 \times 10^{-3} \mathrm{M}=2.92 \times 10^{-3} \mathrm{~m}$
From $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} / \mathrm{m}$, one has $\mathrm{T}_{\mathrm{f}}=-0.005^{\circ} \mathrm{C}$
From $\mathrm{K}_{\mathrm{b}}=0.51 \mathrm{~K} / \mathrm{m}$, one has $\mathrm{T}_{\mathrm{b}}=100.0015{ }^{\circ} \mathrm{C}$
Let's calculate $\Pi\left(25{ }^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
\Pi=[\text { Suc }] R T & =\left(2.92 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)(8.31 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K}) \\
& =7.23 \mathrm{kPax} 7.50 \mathrm{torr} / 1 \mathrm{kPa}=54 \mathrm{torr}
\end{aligned}
$$

In contrast to freezing point depression, and boiling point elevation, which are too small to be measured experimentally, the osmotic pressure can be measured very accurately.

Application: Determination of Molar Mass from Osmotic Pressure

We will show a straightforward method for determining Molar Masses from measured values of Π. The method is very similar to that used to calculate Molar Mass from Freezing Point Depression or Boiling Point Elevation.

Afterwards, I will comment on the method presented in the text, which is useful if one wishes very accurate determinations, but is not straightforward.

Example: When 2.0 g of Hemoglobin (Hb) is dissolved in 100 mL of solution, the osmotic pressure is 5.72 torr at $25^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
\text { Calculate the Molar Mass of Hemoglobin. } \quad & 1 \mathrm{kPa}=7.50 \text { torr } \\
& \mathrm{R}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}
\end{array}
$$

Procedure:

1. Calculate the Molarity of the unknown, $[\mathrm{X}]$ from $\Pi=[\mathrm{X}] \mathrm{RT}$
2. Determine the number of moles, n_{X}, using $[\mathrm{X}]$ and the solution volume
3. Determine the Molar Mass from: $\mathrm{M}_{\mathrm{X}}=$ mass $_{\mathrm{X}} / \mathrm{n}_{\mathrm{X}}$

Example: When 2.0 g of Hemoglobin (Hb) is dissolved in 100 mL of solution, the osmotic pressure is 5.72 torr at $25^{\circ} \mathrm{C}$.
Calculate the Molar Mass of Hemoglobin. $\quad 1 \mathrm{kPa}=7.50$ torr
Procedure:
$\mathrm{R}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}$

1. Calculate the Molarity of the unknown, $[\mathrm{X}]$ from $\Pi=[\mathrm{X}] \mathrm{RT}$

$$
\begin{aligned}
& \Pi=5.72 \text { torr } \cdot 1 \mathrm{kPa} / 7.50 \text { torr }=0.763 \mathrm{kPa} \\
& {[X]=\frac{\Pi}{R T}=\frac{0.763 \mathrm{kPa}}{(8.31 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K})}=3.08 \times 10^{-4} \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

2. Determine the number of moles, n_{X}, using $[\mathrm{X}]$ and the solution volume $n_{X}=[X] \cdot V=\left(3.08 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right) \cdot(0.10 \mathrm{~L})=3.08 \times 10^{-5} \mathrm{~mol}$
3. Determine the Molar Mass from: $\mathrm{M}_{\mathrm{X}}=$ mass $_{\mathrm{X}} / \mathrm{n}_{\mathrm{X}}$

$$
M_{X}=\frac{\operatorname{ma} s s_{X}}{n_{X}}=\frac{2.0 \mathrm{~g}}{3.08 \times 10^{-5} \mathrm{~mol}}=6.49 \times 10^{4} \mathrm{~g} / \mathrm{mol}=65,000 \mathrm{~g} / \mathrm{mol}
$$

Note: The Boiling Point elevation and Freezing Point depression of the above solution would be immeasurably small. Therefore, these techniques are useless to determine Molar Masses of polymers.

Chapter 7 : Slide 41

Homework: When 3.0 g of an unknown compound is placed in 250 mL of solution at $30^{\circ} \mathrm{C}$, the osmotic pressure is 62.4 kPa .

Calculate the Molar Mass of the unknown compound.

$$
\mathrm{R}=8.31 \mathrm{kPa}-\mathrm{L} / \mathrm{mol}-\mathrm{K}
$$

$$
\begin{aligned}
& {[\mathrm{X}]=2.48 \times 10^{-2} \mathrm{~mol} / \mathrm{L}} \\
& \mathrm{n}_{\mathrm{X}}=6.20 \times 10^{-3} \mathrm{~mol} \\
& \mathrm{M}_{\mathrm{X}}=480 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Note: The osmotic pressure, $\Pi=62.4 \mathrm{kPa}=470 \mathrm{~mm} \mathrm{Hg} \approx 0.50$ meters, can be measured to 0.1% accuracy very easily.

In contrast, the freezing point depression (in aqueous solution) would be $\sim 0.05{ }^{\circ} \mathrm{C}$, which could only be measured to approximately $10-20 \%$ accuracy.

Note, once again, that Osmotic Pressure measurements are much more sensitive than the other colligative properties.

FYI: Very Accurate Determination of Molar Masses from Π

Actually, the formula, $\Pi=[B] R T$, is only accurate in dilute solution.
In more concentrated solutions, one has: $\Pi=R T\left\{[J]+k[J]^{2}+\ldots\right\}$
It is shown in the text (Example 5.4) that, writing $\Pi=\rho g h$ (hydrostatic pressure), and c = mass/Volume, one can derive the equation:

$$
\frac{h}{c}=\frac{R T}{\rho g h M_{X}}+\left(\frac{R T k}{\rho g M^{2}}\right) c+\ldots
$$

Then, an accurate value for M_{X} can be obtained from the intercept of a plot of h/c vs. c

Real Solutions: Activities

Ideal Solutions

Earlier in the chapter, we showed that the solvent (A) and solute (B) chemical potentials are given by:
Solvent: $\quad \mu_{A}=\mu_{A}^{*}+R T \ln \left(p_{A} / p_{A}^{*}\right)=\mu_{A}^{*}+R T \ln \left(x_{A}\right)$
Solute: $\quad \mu_{B}=\mu_{B}^{*}+R T \ln \left(p_{B} / p_{B}^{*}\right)=\mu_{B}^{*}+R T \ln \left(x_{B}\right)$

Real Solutions

In solutions which are not ideal, the relatively simple formulae for the solvent and solute chemical potentials can be retained by replacing the mole fractions by activities $\left(\mathrm{a}_{\mathrm{i}}\right)$:
Solvent: $\mu_{A}=\mu_{A}^{*}+R T \ln \left(a_{A}\right)$
Solute: $\mu_{B}=\mu_{B}^{*}+R T \ln \left(a_{B}\right)$

Real Solutions: Activities

Real Solutions

In solutions which are not ideal, the relatively simple formulae for the solvent and solute chemical potentials can be retained by replacing the mole fractions by activities $\left(\mathrm{a}_{\mathrm{i}}\right)$:
Solvent: $\mu_{A}=\mu_{A}^{*}+R T \ln \left(a_{A}\right)$
Solute: $\mu_{B}=\mu_{B}^{*}+R T \ln \left(a_{B}\right)$
The activities can be related to the mole fractions by:
$\mathrm{a}_{\mathrm{A}}=\gamma_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}$ and $\mathrm{a}_{\mathrm{B}}=\gamma_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}$.
γ_{A} and γ_{B} are the activity coefficients, and can be calculated from thermodynamic measurements. Their deviation from $\gamma_{i}=1$ characterizes the extent of non-ideality in a system.

Solute Activities in terms of molalities

In a dilute solution, it is more common to characterize solutes by their molality, rather than mole fraction in solution.

It is straightforward to show that, in a dilute solution, the molality, m_{B}, and mole fraction, x_{B}, are directly proportional:

$$
x_{B}=\frac{n_{B}}{n_{B}+n_{A}} \approx \frac{n_{B}}{n_{A}} \quad\left(\mathrm{n}_{\mathrm{B}} \ll \mathrm{n}_{\mathrm{A}} \text { in dilute solution }\right)
$$

If we assume an amount of solution containing $1 \mathrm{~kg}=1000 \mathrm{~g}$ of solvent, then: $\mathrm{n}_{\mathrm{B}}=\mathrm{m}_{\mathrm{B}}$ and $\mathrm{n}_{\mathrm{A}}=1000 / \mathrm{M}_{\mathrm{A}}$ (solvent Molar Mass).

$$
x_{B} \approx \frac{n_{B}}{n_{A}}=\frac{m_{B}}{1000 / M_{A}}=\left(\frac{M_{A}}{1000}\right) m_{B} \propto m_{B}
$$

The solute chemical potential of an ideal solution, written in terms of molality rather than mole fraction, is:

$$
\begin{array}{ll}
\mu_{B}=\mu_{B}^{+}+R T \ln m_{B} & \begin{array}{l}
\mu_{\mathrm{B}}^{+} \text {is different from the reference state, } \mu_{\mathrm{B}}{ }^{\circ}, \\
\text { when using mole fractions. }
\end{array}
\end{array}
$$

For a non-ideal solute, we can then replace m_{B} by the activity, $a_{B}=\gamma_{B} m_{B}$

$$
\mu_{B}=\mu_{B}^{+}+R T \ln a_{B}=\mu_{B}^{+}+R T \ln \gamma_{B} m_{B}
$$

Activity Coefficients from Colligative Property Measurements

Earlier we discussed that the freezing point depression and boiling point elevation of a solution (assumed ideal) are given by:

$$
\Delta T_{f}=K_{f} m_{B} \quad \text { and } \quad \Delta T_{b}=K_{b} m_{B}
$$

If the solution is non-ideal, the solute molality, m_{B}, is replaced by its activity, a_{B}

$$
\Delta T_{f}=K_{f} a_{B}=K_{f} \gamma_{B} m_{B} \quad \text { and } \quad \Delta T_{b}=K_{b} a_{B}=K_{b} \gamma_{B} m_{B}
$$

Thus, the activity coefficient, γ_{B}, can be determined by a comparison of the measured colligative property with the value expected for an ideal solution:

$$
\begin{aligned}
& \Delta T_{f}(\exp)=K_{f} a_{B}=\gamma_{B}\left(K_{f} m_{B}\right)=\gamma_{B} \Delta T_{f}(\text { ideal }) \\
& \Delta T_{b}(\exp)=K_{b} a_{B}=\gamma_{B}\left(K_{b} m_{B}\right)=\gamma_{B} \Delta T_{b}(\text { ideal })
\end{aligned}
$$

Example: When 25 g of Napthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}, \mathrm{M}=128\right)$ is placed in 500 g of benzene $\left(\mathrm{K}_{\mathrm{f}}=5.12^{\circ} \mathrm{C} / \mathrm{m} . \mathrm{T}_{\mathrm{f}}{ }^{\mathrm{o}}=5.5^{\circ} \mathrm{C}\right)$, the freezing point of the solution is $3.9^{\circ} \mathrm{C}$.

What is the activity coefficient of napthalene in this solution?

$$
\begin{aligned}
& \quad 25 \mathrm{~g} / 128 \mathrm{~g} / \mathrm{mol} \\
& m_{B}=\frac{0.50 \mathrm{~kg}}{}=0.391 \mathrm{~mol} / \mathrm{kg}=0.391 \mathrm{~m} \\
& \Delta T_{f}(\text { ideal })=K_{f} m_{B}=(5.12 \mathrm{~K} / \mathrm{m})(0.391 \mathrm{~m})=2.00 \mathrm{~K}=2.00^{\circ} \mathrm{C} \\
& \Delta T_{f}(\exp)=T_{f}^{o}-T_{f}=5.5-3.9=1.6^{\circ} \mathrm{C} \\
& \Delta T_{f}(\exp)=K_{f} a_{B}=\gamma_{B}\left(K_{f} m_{B}\right)=\gamma_{B} \Delta T_{f}(\text { ideal })
\end{aligned}
$$

$$
\downarrow
$$

$$
\gamma_{B}=\frac{\Delta T_{f}(\exp)}{\Delta T_{f}(\text { ideal })}=\frac{1.6^{\circ} \mathrm{C}}{2.0^{\circ} \mathrm{C}}=0.80
$$

