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Chapter 4 Homework 
 
 
1. Calculate the scalar product and cross product of the of the two vectors: 
 
 

2. Consider a rigid rotor in the state characterized by:  
2 2siniAe    

  
 (a)  Verify that  is a solution to the Rigid Rotor Schrödinger Equation (below).  What is 

the eigenvalue (i.e. energy)? 

 Note:  You will probably find it useful to use the trigonometric identity, 
 2 2 2 2sin cos 1 cos 1 sin         
 
 (b)  Calculate the squared angular momentum, L2, of the rotor. 

 (c)  Calculate the z-component of angular momentum, Lz, of the rotor: 
 
 
3. As discussed in class, the rotational motion of a diatomic molecule chemisorbed on a 

crystalline surface can be modelled as the rotation of a 2D Rigid Rotor.  Consider F2 
adsorbed on a platinum surface.  The F2 bond length is 0.142 nm.  

 Calculate the frequency (in cm-1) of the rotational transition of an F2 molecule from the  
 m = 2 level to the m = 8 level. 
 
 
4. The first two lines the rotational Raman spectrum of H79Br are found at 50.2 cm-1 and 

83.7 cm-1.  Calculate the H-Br bond length, in Å. 
 
 
5. Which of the following molecules will have a rotational microwave absorption 

spectrum?:  H2O, H-CC-H, H-CC-Cl, cis-1,2-dichloroethylene, benzene, NH3. 
 
 
6. The first microwave absorption line in 12C16O occurs at 3.84 cm-1 

 (a)  Calculate the CO bond length. 
 (b)  Predict the frequency (in cm-1) of the 7th. line in the microwave spectrum of CO.. 
 (c)  Calculate the ratio of the intensities of the 5th. line to the 2nd line in the spectrum 
        at 25 oC 
 (d)  Calculate the the initial state (J’’) corresponding to the most intense 
         transition in the microwave absorption spectrum of 12C16O at 25 oC.  
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7. The CC and C-H bond lengths in the linear molecule, acetylene (H-CC-H) are 1.21 Å 

and 1.05 Å, respectively 
 

 (a)  What are the frequencies of the first two lines in the rotational Raman 
        spectrum? 

  (b)  What are the frequencies of the first two lines in the rotational Mookster  
        absorption spectrum, for which the selection rule is J = +3 ? 

 (c)  Calculate the ratio of intensities in the 20th. lowest frequency line to that of the 5th.       
                lowest frequency line in the rotational Raman spectrum at 100 oC. 
 
 
8. For two (2) moles of the non-linear molecule NO2(g) at 150 oC, calculate the rotational 

contributions to the internal energy, enthalpy, constant pressure heat capacity, entropy, 
Helmholtz energy and Gibbs energy.  The Moments of Inertia are: 

 Ia = 3.07x10-47 kg-m2 , Ib = 6.20x10-46 kg-m2 , Ic = 6.50x10-46 kg-m2. 
 The symmetry number is 2. 
 
 
9. The molecular rotational partition function of H2 at 25 oC is qrot = 1.70. 

 (a)  What is qrot for D2 at 25 oC? 
 (b)  What is qrot for H2 at 3000 oC? 
 
 
 
DATA 
 
h = 6.63x10-34 J·s    1 J = 1 kg·m2/s2 
ħ = h/2 = 1.05x10-34 J·s   1 Å = 10-10 m 

c = 3.00x108 m/s = 3.00x1010 cm/s  k·NA = R   
NA = 6.02x1023 mol-1    1 amu = 1.66x10-27 kg 
k = 1.38x10-23 J/K    1 atm. = 1.013x105 Pa 
R = 8.31 J/mol-K     1 eV = 1.60x10-19 J 
R = 8.31 Pa-m3/mol-K 
me = 9.11x10-31 kg (electron mass) 
 

Rigid Rotor Schrödinger Equation: 

  

 
       The Lz Equation: 
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Some “Concept Question” Topics 

 
Refer to the PowerPoint presentation for explanations on these topics. 
 

 Significance of angular momentum operator commutation 

 Interpretation of |L| and Lz for rigid rotor in magnetic field 

 Amount of required isotopic data to determine structure of linear molecule 

 HOMO and LUMO electron distributions.  Relationship to changes in bond lengths in 
excited electronic states (see, for example, pyridine) 

 
 Equipartition of rotational energy and heat capacity in linear and non-linear molecules 

 
 
 



1

Slide 1

Chapter 4

Rigid-Rotor Models and
Angular Momentum Eigenstates

Slide 2

Outline

• Math Preliminary:  Products of Vectors

• Rotational Motion in Classical Physics

• The 3D Quantum Mechanical Rigid Rotor

• Angular Momentum in Quantum Mechanics

• Angular Momentum and the Rigid Rotor

• The 2D Quantum Mechanical Rigid Rotor

• The 3D Schrödinger Equation:  Spherical Polar Coordinates

• Rotational Spectroscopy of Linear Molecules

Not Last Topic



2

Slide 3

Outline (Cont’d.)

• Application of QM to Molecular Structure:  Pyridine

• Statistical Thermodynamics:  Rotational contributions to
the thermodynamic properties
of gases

Slide 4

Mathematical Preliminary:  Products of Vectors



Scalar Product (aka Dot Product)

Note that the product
is a scalar quantity
(i.e. a number)

Magnitude:

Parallel Vectors:
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

Cross Product

The cross product of two vectors is also a vector.

Its direction is perpendicular to both A and B 
and is given by the “right-hand rule”.

Magnitude:

Parallel Vectors:

Perpendicular Vectors:

Slide 6



Expansion by
Cofactors
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Rotational Motion in Classical Physics

Magnitude:

Angular Momentum (L)

m

Circular Motion:

or:

where

Energy

or:

Moment
of Inertia

Angular
Frequency
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Comparison of Equations for Linear and Circular Motion

Linear Motion Circular Motion

Mass Moment of inertiam

Velocity Angular velocityv

Momentum Angular momentump=mv

Energy Energy

or Energy

Slide 10

Modification:  Rotation of two masses about Center of Mass

m

m1 m1
r

where
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Angular Momentum in Quantum Mechanics

Classical Angular Momentum
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Angular Momentum in Quantum Mechanics

QM Angular Momentum Operators

Classical QM Operator

^
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Operator Commutation and Simultaneous Eigenfunctions

It can be shown that: Do not commute

Do not commute

Do not commute

Because the operators for the individual components do not commute,
one cannot determine two separate components simultaneously.

i.e. they cannot have simultaneous eigenfunctions.

In contrast, it can be shown that: ^ Do commute

Because these operators commute, one can determine Lz and L2

simultaneously;  i.e. they can have simultaneous eigenfunctions.
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The 2D Quantum Mechanical Rigid Rotor

Assume that two masses are attached by a rigid rod (i.e. ignore
vibrations) at a fixed distance, r,and are free to rotate about 
the Center of Mass in their x-y plane.

m1

m1

r 
x

y

The angle  represents the angle of rotation relative to the x-axis.

The 2D Schrödinger equation for the
relative motion of two masses is:

Two Dimensional Laplacian
in Cartesian Coordinates
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If one   (a)  converts the Laplacian to polar coordinates 

(b) assumes that the potential energy is constant
(arbitrarily 0)

(c)  holds r fixed (i.e. neglects derivatives with respect to r)

It can be shown that the Schrödinger Equation for a 2D Rigid
Rotor becomes:

or

where is the moment of inertia

Slide 18

The Solution

or

Note:  So far, m can have any value; 

i.e. there is no energy quantization

Assume
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Application of the Boundary Conditions:
Quantization of Energy

To be a physically realistic 

solution, one must have:

Therefore:

or

This is valid only for:

Therefore, only certain values for the energy are allowed;
i.e. the energy is quantized:

Slide 20

Zero Point Energy

There is no minimum Zero Point Energy.

One encounters a ZPE only when the particle is bound (e.g. PIB,
Harmonic Oscillator, Hydrogen Atom), but not in freely moving
systems (e.g. 2D and 3D Rigid Rotor, free particle)
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Application of the 2D Rigid Rotor

We have solved the 2D Rigid Rotor primarily as a learning exercise,
in order to demonstrate the application of angular Boundary Conditions.

However, the model has a real world application, in that it can be used 
to characterize the rotation of molecules adsorbed on surfaces.

Example

When an H2 molecule is chemisorbed on a crystalline surface, its
rotation can be approximated as that of a 2D rigid rotor.

The H2 bond length is 0.74 Å Calculate the frequency (in cm-1) of 

the lowest energy rotational transition of chemisorbed H2.

Slide 22

r = 0.74 Å = 0.74x10-10 m
1 amu = 1.66x10-27 kg
ħ = 1.05x10-34 J•s
h = 6.63x10-34 J•s
c = 3.00x1010 cm/s

m1 = 0

m2 = 1
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The Three Dimensional Schrödinger Equation

In Cartesian Coordinates, the 3D Schrödinger Equation is:

The Laplacian in Cartesian Coordinates is:

T(x) T(y) T(z) V(x,y,z)

Therefore:

It is sometimes not possible to solve the Schrödinger exactly in
Cartesian Coordinates (e.g. the Hydrogen Atom), whereas it
can be solved in another coordinate system.

The “Rigid Rotor” and the Hydrogen Atom can be solved exactly
in Spherical Polar Coordinates.
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Spherical Polar Coordinates

To specify a point in space requires three coordinates.
In the spherical polar coordinate system, they are:

r      0  r <  Distance of point from origin (OP)

 0   <  Angle of vector (OP) from z-axis

 0   < 2 Angle of x-y projection (OQ) from x-axis

Slide 26

Relation of Cartesian to Spherical Polar Coordinates

 r
z x-axis

y-axis

O

Q


x

y

OQ=rsin()

OQ
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The Volume Element in Spherical Polar Coordinates

In Cartesian Coordinates,

the volume element is:

In spherical polar coordinates,

the volume element is:

Slide 28

The Laplacian in Spherical Polar Coordinates

Cartesian Coordinates:

One example of a chain rule formula connecting a derivative with
respect to x, y, z to derivatives with respect to r, ,  is:

It may be shown that by repeated application of chain rule formulae
of this type (with 2-3 hours of tedious algebra), the Laplacian in
spherical polar coordinates is given by:
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Angular Momentum Operators in Spherical Polar Coordinates

It may be
shown that

^

It may be
shown that

^
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The 3D Quantum Mechanical Rigid Rotor

3D Schrödinger Equation for a particle (Sph. Pol. Coords.)

Modification:  Two masses moving relative to their CM

m1 m1
r

Slide 32

The Schrödinger Equation in terms of the L2 operator
^

^
The L2 operator is:

^

where
^

Radial KE Rotational
KE

PE
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The Quantum Mechanical Rigid Rotor

The Rigid Rotor model is used to characterize the rotation of
diatomic molecules (and is easily extended to linear polyatomic molecules)

It is assumed that: (1)  The distance between atoms (r) does not change.

(2)  The potential energy is independent of angle
[i.e. V(,) = Const. = 0]

^

Therefore:
^

Slide 34

This equation can be separated into two equations, one 
containing only  and the second containing only .

Assume:

Solution of the Rigid Rotor Schrödinger Equation

Algebra + Separation of Variables

and

We will only outline the method of solution.
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Solution of the  equation is rather simple.

However, solution of the  equation most definitely is NOT.

Therefore, we will just present the results for the quantum numbers,
energies and wavefunctions that result when the two equations 
are solved and boundary conditions are applied.

and

Slide 36

The Rigid Rotor Quantum Numbers and Energies

The Quantum Numbers:

Note that because this is a two dimensional problem, there
are two quantum numbers.

The Energy:

Note that the energy is a function of l only.  However, there are
2 l + 1 values of m for each value of l .  Therefore, the degeneracy
of the energy level is 2 l + 1

Remember that for a classical Rigid Rotor:

Comparing the expressions, one finds for the

angular momentum, that:
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An Alternate Notation

The Quantum Numbers:

The Energy:

When using the Rigid Rotor molecule to describe the rotational
spectra of linear molecules, it is common to denote the two
quantum numbers as J and M, rather than l and m.

With this notation, one has:

Slide 38

The Wavefunctions

When both the  and  differential equations have been solved,
the resulting wavefunctions are of the form:

The             are known as the associated Legendre polynomials.

The first few of these functions are given by:

We will defer any visualization of these wavefunctions until
we get to Chapter 6:  The Hydrogen Atom
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Spherical Harmonics

The product functions of  and  are called “Spherical Harmonics”,
Ylm(, ):

They are the angular solutions to the Schrödinger Equation for any
spherically symmetric potential; i.e. one in which V(r) is independent
of the angles  and .

Some examples are:

Slide 40

One of the Spherical Harmonics is:

Show that this function is an eigenfunction of the Rigid Rotor
Hamiltonian and determine the eigenvalue (i.e. the energy).

^
or
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Therefore:

Note:  Comparing to:

we see that:
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Angular Momentum and the Rigid Rotor

The Spherical Harmonics, Ylm(, ), are eigenfunctions of the
angular momentum operators:

^

Note:  It is straightforward to show that L2 and Lz commute;

i.e. [L2,Lz] = 0.  

Because of this, it is possible to find simultaneous
eigenfunctions of the two operators which are, as shown above,
the Spherical Harmonics.

^ ^

^^

^
The eigenvalues are given by the equations:
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As discussed earlier, the restrictions on the quantum numbers
are given by:

Therefore, both the magnitude, |L|, and the z-component, Lz, of the
angular momentum are quantized to the values:

z-axis

Lz |L|

If a magnetic field is applied, its direction
defines the z-axis.

If there is no magnetic field, the z-direction
is arbitrary.

Slide 46

One of the Spherical Harmonics is:

^

Show that this function is an eigenfunction of L2 and Lz and determine
the eigenvalues.

^^

We’ve actually done basically the first part a short while ago.

Remember: ^

Therefore:
^
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Preview:  The Hydrogen Atom Schrödinger Equation

3D Schrödinger Equation in Spherical Polar Coordinates

The Hydrogen atom is an example of a “centrosymmetric” system,
which is one in which the potential energy is a function of only r, V(r).

In this case, the Schrödinger equation can be rearranged to:

Radial Part Angular Part

Note that the Angular part of the Hydrogen atom Schrödinger equation
is the same as Rigid Rotor equation, for which the radial part vanishes.

Therefore, the angular parts of the Hydrogen atom wavefunctions are
the same as those of the Rigid Rotor
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Rotational Spectroscopy of Linear Molecules

Energy Levels

Equivalent Form:

Rotational
Constant  (cm-1):

Note:  You must use c in cm/s, even when
using MKS units.

0 0 g0=1

1 g1=3

E
 / 

hc
  [

cm
-1

]

J EJ gJ

2 g2=5

3 g3=7

4 g4=9
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Diatomic versus Linear Polyatomic Molecules

In general, for linear molecules, the moment of inertia is given by:

N is the number of atoms
mi is the mass of the atom i
ri is the distance of atom i from the Center of Mass.

If N=2 (diatomic molecule) the moment of inertia reduces to:

where r is the interatomic distance
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Selection Rules

Absorption (Microwave) Spectroscopy

For a rotating molecule to absorb light, it must have a permanent
dipole moment, which changes direction with respect to the electric 
vector of the light as the molecule rotates.

J = 1 (J = +1  for absorption)

e.g. HCl, OH (radical) and O=C=S will absorb microwave radiation.

O=C=O and H-CC-H will not absorb microwave radiation.

Rotational Raman Spectroscopy
For a rotating molecule to have a Rotation Raman spectrum, the
polarizability with respect to the electric field direction must change 
as the molecule rotates.  All linear molecules have 
Rotational Raman spectra.

J = 2

J = +2:  Excitation (Stokes line)

J = -2:  Deexcitation (Anti-Stokes line)

Slide 52

Intensity of Rotational Transitions

The intensity of a transition in the absorption (microwave) or
Rotational Raman spectrum is proportional to the number of molecules
in the initial state (J’’); i.e. Int.  NJ’’

Boltzmann Distribution:
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Rotational Spectra

0 0 g0=1

1 g1=3

E
 / 

hc
  [

cm
-1

]

J EJ gJ

2 g2=5

3 g3=7

4 g4=9Absorption (Microwave) Spectra

J’’  J’

J’ = J’’+1

B
~

2 B
~

4 B
~

6 B
~

8~0
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0 0 g0=1

1 g1=3

E
 / 

hc
  [

cm
-1

]

J EJ gJ

2 g2=5

3 g3=7

4 g4=9Rotational Raman Spectra

J’’  J’

J’ = J’’+2

~
0
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The HCl bond length is 0.127 nm.

Calculate the spacing between lines in the rotational microwave 

absorption spectrum of H-35Cl, in cm-1. h = 6.63x10-34 J•s
c = 3.00x108 m/s
c = 3.00x1010 cm/s
NA = 6.02x1023 mol-1

k = 1.38x10-23 J/K
1 amu = 1.66x10-27 kg

As discussed above, microwave absorption lines occur at 2B, 4B, 6B, ...

Therefore, the spacing is 2B

~ ~ ~

~
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h = 6.63x10-34 J•s
c = 3.00x1010 cm/s
k = 1.38x10-23 J/K

B = 10.8 cm-1
~

Calculate the ratio of intensities (at 250C):

0 0 g0=1
1 g1=3

E
 / 

hc
  [

cm
-1

]

J EJ gJ

2 g2=5

3 g3=7

4 g4=9

Note: This is equivalent to asking for the ratio of intensites of
fourth line to the second line in the rotational microwave spectrum.
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The first 3 Stokes lines in the rotational Raman 
spectrum of 12C16O2 are found at 2.34 cm-1, 
3.90 cm-1 and 5.46 cm-1.

Calculate the C=O bond length in CO2, in nm.

h = 6.63x10-34 J•s
c = 3.00x1010 cm/s
k = 1.38x10-23 J/K
1 amu = 1.66x10-27 kg

0 0 g0=1
1 g1=3

E
 / 

hc
  [

cm
-1

]

J EJ gJ

2 g2=5

3 g3=7

4 g4=9
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CM

rCO rCO

The first 3 Stokes lines in the rotational Raman 
spectrum of 12C16O2 are found at 2.34 cm-1, 
3.90 cm-1 and 5.46 cm-1.

Calculate the C=O bond length in CO2, in nm.

h = 6.63x10-34 J•s
c = 3.00x1010 cm/s
k = 1.38x10-23 J/K
1 amu = 1.66x10-27 kg
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h = 6.63x10-34 J•s
c = 3.00x1010 cm/s
k = 1.38x10-23 J/K

Calculate the initial state (i.e. J’’) corresponding to the most
intense line in the rotational Raman spectrum of 12C16O2 at 25oC.

Hint:  Rather than calculating the intensity of individual
transitions, assume that the intensity is a continuous
function of J’’ and use basic calculus.

B = 0.39 cm-1
~

NJ'' is at a maximum for dNJ''/dJ''=0.

Slide 60

Therefore:

h = 6.63x10-34 J•s
c = 3.00x1010 cm/s
k = 1.38x10-23 J/K

B = 0.39 cm-1~
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Consider the linear molecule, H-CC-Cl.

There are two major isotopes of chlorine, 35Cl (~75%) and
37Cl (~25%).  Therefore, one will observe two series of lines
in the rotational spectrum, resulting from transitions of
H-CC-35Cl and H-CC-37Cl. 

Can the structure of H-CC-Cl be determined from these two series?

No.  There are 3 bond distances to be determined,
but only 2 moments of inertia.

What additional information could be used to determine all three
bond distances?

The spectrum of D-CC35Cl and D-CC37Cl

Slide 62

Iz

Ix

Iy

Non-Linear Molecules

Non-linear molecules will generally have up to
3 independent moments of inertia, Ix, Iy, Iz.

The Hamiltonian will depend upon the angular
momentum about each of the 3 axes.

The Schrödinger Equation for non-linear rotors is more difficult to solve,
but can be done using somewhat more advanced methods, and the
rotational spectra can be analyzed to determine the structure
(sometimes requiring isotopic species).

For small to moderate sized molecules (I would guess 10-15 atoms),
rotational microwave spectroscopy is the most accurate method for
determining molecular structure.
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of gases
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1.35  Å
1.34

1.40  Å
1.38

1.39  Å
1.38

117o

117

124o

124

119o

119

118o

118

The Structure of Pyridine

Calculated:  MP2/6-31G(d) – 4 minutes

Experimental:  Crystal Structure
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#MP2/6-31G(d) opt freq 

Pyridine

0 1
C   -1.236603    1.240189    0.000458
C   -1.236603   -0.179794    0.000458
C   -0.006866   -0.889786    0.000458
C    1.222870   -0.179794    0.000458
C    1.053696    1.280197    0.000458
N   -0.104187    1.989731    0.000458
H    1.980804    1.872116   -0.008194
H    2.205566   -0.673935   -0.009628
H   -0.006866   -1.989731   -0.009064
H   -2.189194   -0.729767   -0.009064
H   -2.205551    1.760818    0.009628

The Command File for the Structure of Pyridine

Slide 66

The Frontier Orbitals of Pyridine

HOMO LUMO

Calculated:   HF/6-31G(d) – <3 minutes

Experimental:  Huh???
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1.35  Å
1.40

1.40  Å
1.33

1.39  Å
1.44

117o

116

124o

120

119o

119

118o

120

The Structure of Excited State Pyridine

S0: Calculated:  MP2/6-31G(d) – 4 minutes

T1: Calculated:  MP2/6-31G(d) – 11 minutes

Experimental:  None
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Outline (Cont’d.)

• Application of QM to Molecular Structure:  Pyridine

• Statistical Thermodynamics:  Rotational contributions to
the thermodynamic properties
of gases
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Statistical Thermodynamics: Rotational Contributions to 
Thermodynamic Properties of Gases

A Blast from the Past
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The Rotational Partition Function:  Linear Molecules

The Energy:

The Partition Function:

It can be shown that for most molecules at medium to high
temperatures:

Thus, the exponent (and hence successive terms in the
summation) change very slowly.

Therefore, the summation in qrot can be replaced by an integral.
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This integral can be solved analytically by a simple substitution.

Therefore:
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A Correction

For homonuclear diatomic molecules, one must account for the fact
that rotation by 180o interchanges two equivalent nuclei.

Since the new orientation is indistinguishable from the original one, one
must divide by 2 so that indistinguishable orientations are counted once.

For heteronuclear diatomic molecules, rotation by 180o produces a
distinguishable orientation.  No correction is necessary.

 is the "symmetry number"

Homonuclear Diatomic Molecule:  = 2

Heteronuclear Diatomic Molecule:  = 1
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How good is the approximate formula?

Exact: Approx:

H2: I = 4.61x10-48 kg•m2  R = 87.5 K

O2: I = 1.92x10-46 kg•m2  R = 2.08 K

Compd.   T         qrot(ex)  qrot(app)   Error

O2 298 K     71.8        71.7       0.2%

H2 298         1.88        1.70       10%

H2 100         0.77        0.57       26%     

H2 50         0.55        0.29       47%

For molecules like H2, HCl, …, with small moments of inertia, the 
integral approximation gives poor results, particularly at lower
temperatures.
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The Total Partition Function for N Molecules (Qrot)

and

where
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Internal Energy

Therefore:

or

This illustrates Equipartition of Rotational Internal Energy.

[(1/2)RT per rotation].
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Enthalpy
Qrot independent of V

Heat Capacities

Remember that these results are for Diatomic and Linear
Polyatomic Molecules.
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Chap. 3

Experimental Heat Capacities at 298.15 K

Compd.     CP (exp)

H2 29.10  J/mol-K

O2 29.36

I2 36.88        

We can see that vibrational (and/or electronic) contributions
to CP become more important in the heavier diatomic molecules.

We'll discuss this further in Chap. 5
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Entropy

O2:  r = 1.202 Å = 1.202x10-10 m  (from QM - QCISD/6-311G*)

 = 2  (Homonuclear Diatomic)
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O2 (Cont'd)

For one mole of O2 at 298 K:

Stran = 151.9 J/mol-K  (from Chap. 3)

Stran + Srot = 195.7 J/mol-K

O2:  Smol(exp) =  205.1 J/mol-K at 298.15 K

Thus, there is a small, but finite, vibrational (and/or) electronic 
contribution to the entropy at room temperature.
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E (Thermal)        CV                    S
KCAL/MOL  CAL/MOL-K    CAL/MOL-K

TOTAL                     3.750             5.023             48.972
ELECTRONIC          0.000            0.000              2.183
TRANSLATIONAL  0.889            2.981             36.321
ROTATIONAL         0.592            1.987             10.459
VIBRATIONAL        2.269            0.055              0.008

Q                      LOG10(Q)           LN(Q)
TOTAL BOT            0.330741D+08          7.519488         17.314260
TOTAL V=0             0.151654D+10          9.180853         21.139696
VIB (BOT)                0.218193D-01         -1.661159         -3.824960
VIB (V=0)                 0.100048D+01          0.000207          0.000476
ELECTRONIC          0.300000D+01          0.477121          1.098612
TRANSLATIONAL  0.711178D+07          6.851978         15.777263
ROTATIONAL         0.710472D+02          1.851547          4.263345

Output from G-98 geom. opt. and frequency calculation on O2 (at 298 K)

QCISD/6-311G(d)

(same as our result)
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Translational + Rotational Contributions to O2 Entropy

Note that the other (vibration and/or electronic) contributions
to S are even greater at higher temperature.
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Translational + Rotational Contributions to O2 Enthalpy

There are also significant additional contributions
to the Enthalpy.
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Translational + Rotational Contributions to O2 Heat Capacity

Note that the additional (vibration and/or electronic) contributions
to CP are not important at room temperature, but very significant
at elevated temperatures.
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Helmholtz and Gibbs Energies

Qrot independent of V

For O2 at 298 K:  R = 2.08 K



43

Slide 85

Non-Linear Polyatomic Molecules

It can be shown that:

The symmetry number is defined as the
"number of pure rotational elements
(including the identity) in the 
molecule's point group:
NO2:   = 2
NH3:   = 3
CH4:   = 12

I will always give you the value of 
for non-linear polyatomic molecules.

One can simply use the expression for qrot above in the same
way as for linear molecules to determine the rotational contributions
to the thermodynamic properties of non-linear polyatomic molecules
(as illustrated in one of the homework problems).


