
CHAPTER 6 
THE HYDROGEN ATOM 

OUTLINE 
 

Homework Questions Attached 
 
SECT          TOPIC  
 
1. The Hydrogen Atom Schrödinger Equation 
 
2. The Radial Equation (Wavefunctions and Energies) 
 
3. The HydrogenAtom Wavefunctions (Complex and Real) 
 
4. Use of the Wavefunctions (Calculating Averages) 
 
5. The Radial Distribution Function 
 
6. Atomic Units 
 
 
 
 
 
 
 
 



Chapter 6 Homework 
 
 
1. The energy levels of hydrogenlike atoms are given by: 
 
 (a)  Calculate the wavelength, in nm, of the n=6 to n=3 radiative transition in He+. 
 (b)  Calculate the ionization energy of He+, in eV 
 
 
 Note:   
 
  
2. The 1s and 2s wavefunctions of hydrogenlike atoms are: 
 
 
 
 
 (a)  Prove the 1s and 2s are orthogonal to each other. 
 (b)  Calculate the normalization constant, A1s. 
 (c)  Calculate the most probable value of r for an electron in a 1s  orbital. 
 (d)  Calculate <r> for an electron in a 1s orbital (Note: first normalize 
       the radial distribution function). 
 (e)  Calculate the probability that the electron in a 1s orbitl is between r=0  
        and r=2a0/Z 
 (f)  Calculate the probability that r is in the range:  a0/Z  r  4a0/Z 
 (g)  Calculate the average potential energy of an electron in a =1s 
       orbital. 
 (h)  Show that the Radial component of 1s is an eigenfunction of the  
       radial Schrödinger equation (below) with  l = 0  
 
 
3. The 2px wavefunction of hydrogenlike atoms is given by: 

   0/2
2 sin cosZr a
px Are     

 (a)  Calculate the most probably value of r for an electron in a 2px orbital. 
 (b)  Calculate <r2> for an electron in a 2px orbital (Note: first normalize 
        the radial distribution function). 
 
 
4. One of the wavefunctions of hydrogenlike atoms is: 
 
 
 (a)  Show that Ylm(,) is an eigenfunction of the L2 operator 
        (below).  What is the eigenvalue? 
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 (b)  Show that Ylm(,) is an eigenfunction of the Lz operator 
        (below).  What is the eigenvalue? 

 (c)  Set up the product of 3 integrals in spherical polar coordinates required 
        to calculate <y2>.  You do NOT have to perform the integrals. 
 
 
5. Two of the complex hydrogen atom d (l=2) wavefunctions are: 
  
 
 Use the Euler Relations below to show how these can be combined to yield two real 

forms of the hydrogen atom d wavefunctions. 
 
 
DATA 
 
h = 6.63x10-34 J·s    1 J = 1 kg·m2/s2 
ħ = h/2 = 1.05x10-34 J·s   1 Å = 10-10 m 

c = 3.00x108 m/s = 3.00x1010 cm/s  k·NA = R   
NA = 6.02x1023 mol-1    1 amu = 1.66x10-27 kg 
k = 1.38x10-23 J/K    1 atm. = 1.013x105 Pa 
R = 8.31 J/mol-K     1 eV = 1.60x10-19 J 
R = 8.31 Pa-m3/mol-K 
me = 9.11x10-31 kg (electron mass) 
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The Hydrogen Atom Schrödinger Equation

The Potential Energy

For two charges, q1 and q2, separated by a distance, r:

Force: Potential Energy:

If the charges are of opposite sign, the potential energy, V(r),
is negative; i.e. attractive.

“Hydrogenlike” Atoms (H, He+, Li2+, etc.)

Ze

-e

r
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The Schrödinger Equation

In this equation, m represents the mass of an electron (9.11x10-31 kg).
Strictly speaking, one should use the reduced mass, , of an electron and
proton.  However, because the proton is 1830 times heavier,  = 0.9995m. 
Therefore, many texts (including ours) just use the electron mass.

Because V = V(r), one can solve the equation exactly if the Laplacian is
written in spherical polar coordinates, giving:
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L2 Operator^

^

The sole dependence of this equation on  or  is embodied in
the L2 operator.^

We learned in Chapter 4 (The Rigid Rotor) that the Spherical
Harmonics, Yl,m(, ), are eigenfunctions of L2 .^

^

They are also eigenfunctions of Lz:
^

Slide 6

^

One can remove the dependence of this equation on  and ,

embodied in L2, by assuming that:^

^
This gives:

Because
^
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We can now remove the dependence on  and  completely.

We now have the “Radial Equation” for the hydrogen atom.

The solution to this equation is non-trivial to say the least.
We will just present the solutions below.

This equation must be solved subject to the boundary condition:
R(r)  0 as r  .

Note: In retrospect, it should not be surprising that the angular
solutions of the hydrogen atom are the same as the Rigid Rotor
(Chapter 4).

Neither potential energy function (V=0 for the Rig. Rot.) depends
on  or , and they must satisfy the same angular Boundary
Conditions.
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When the equation is solved and the boundary condition,
R(r)  0 as r  , is applied, one gets a new quantum number, n,
with the restriction that:

Together with the two quantum numbers that came from solution
to the angular equations, one has three quantum numbers
with the allowed values:

The Third Quantum Number

or, equivalently

The Radial Equation Solutions

Slide 10

The Radial Wavefunctions

The functions which are solutions of the Radial Equation are dependent
upon both n and l and are of the form:

where = 0.529 Å

Bohr Radius

Several of the Radial functions are:
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The Energies

The energy eigenvalues are dependent upon n only and are given by:

This expression for the energy levels of “hydrogenlike” atoms is
identical to the Bohr Theory expression.

However, the picture of electron motion
furnished by Quantum Mechanics is 
completely different from that of the 
semi-classical Bohr model of the atom.

E
n

er
g

y

1 -k

2 -k/4

3 -k/9
4 -k/16

 0
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Show that R10(r) is an eigenfunction of the Radial equation
and that the eigenvalue is given by E1 (below).

or

or

Note:  the alternative forms above have been obtained using:
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Therefore:
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The Hydrogen Atom Wavefunctions

The Complete Wavefunction  (Complex Form)

Note that these wavefuntions are complex functions because
of the term, eim.

This does not create a problem because the probability of finding
the electron in the volume element, dV = r2sin()drdd is given by:
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Real Form of the Wavefunctions

It is common to take the appropriate linear combinations of the 
complex wavefunctions to obtain real wavefunctions.

This is legal because the energy eigenvalues depend only on n 
and are independent of  l and m; i.e. wavefunctions with different
values of l and m are degenerate.

Therefore, any linear combination of wavefunctions with the same
value of n is also an eigenfunction of the Schrödinger Equation.

p wavefunctions (l = 1)

Already real

Slide 18

p wavefunctions (l = 1)  (Cont’d)

Real

Real
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p wavefunctions (l = 1)  (Cont’d)

Spherical Polar Coords.

x = rsin()cos()

y = rsin()sin()

z = rcos()

Slide 20

d wavefunctions (l = 2)

Already real
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d wavefunctions (l = 2)  (Cont’d.)

By the same procedures used above for the p wavefunctions, one finds:

Slide 22

Plotting the Angular Functions

Below are the familiar polar plots of the angular parts of the hydrogen
atom wavefunctions.

x
y

z
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Plotting the Radial Functions

R1s has no nodes
R2s has 1 node
R3s has 2 nodes

R1s

R2s

R3s

r/ao r/ao

R1s
2

R2s
2

R3s
2
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R2p has no nodes
R3p has 1 node
R3d has no nodes

r/ao

R2p

R3p

R3d

r/ao

R2p
2

R3p
2

R3d
2

In General: (a)  A wavefunction has a total of n-1 nodes

(b)  There are l angular nodes (e.g. s-0, p-1, d-2)c

(c)  The remainder (n-1-l) are radial nodes.
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Use of Hydrogen-like Atom Wavefunctions

To illustrate how the hydrogen-like atom wavefunctions may be used
to compute electronic properties, we will use the 2pz (=2p0) wavefunction.

r      0  r <  Distance of point from origin (OP)

 0     Angle of vector (OP) from z-axis

 0    2 Angle of x-y projection (OQ) from x-axis

Review:  Spherical Polar Coordinates
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Wavefunction Normalization

Slide 28
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We could have combined the extra Z/a0 into the normalization constant

Slide 30

Calculation of <r>

Same as beforeand
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Calculation of other Averages

We use the same procedures.  For example, I’ll set up the calculation
for the calculation of <y2>, where y = rsin()sin()

and evaluate.
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The Radial Distribution Function

Often, one is interested primarily in properties involving only r, the 
distance of the electron  from the nucleus.

In these cases, it is simpler to integrate over the angles,  and .

One can then work with a one dimensional function (of r only), called
the Radial Distribution Function, which represents the probability
of finding the electron between r and r+dr.
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r/ao

R2p
2

R3p
2

R3d
2

The Radial Distribution Function

Is the most probable value of r for an electron in a hydrogen
2p orbital the maximum in R2p

2 ?

No!!  Relative values of R2p
2 represent the relative probability

of finding an electron at this value of r for a specific pair
of values of  and .

To obtain the relative probability of finding an electron at a given
value of r and any angle, one must integrate * over all values
of  and . 

Slide 36

One can write the wavefunction as:

The probability of finding an electron at a radius r, independent 
of  and  is:

where

i.e. we’ve incorporated the integrals over  and  into B

or

is called the Radial Distribution Function (or
Radial Probability Density in this text)
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We’ll use RDF(r)  P(r)

RDF1s has 1 maximum 
RDF2s has 2 maxima
RDF3s has 3 maxima 

RDF1s

RDF2s

RDF3s

r/a0

R1s has no nodes
R2s has 1 node
R3s has 2 nodes

This is because:

Slide 38

We’ll use RDF(r)  P(r)

RDF1s has 1 maximum 
RDF2p has 1 maximum
RDF3d has 1 maximum 

RDF1s

RDF2p

RDF3d

r/a0

R1s has no nodes
R2p has no nodes
R3d has no nodes

This is because:
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Most Probable Value of r

RDF1s

RDF2p

RDF3d

r/a0

The most probable value of the distance from the nucleus, r, is
given by the maximum in the Radial Distribution Function, P(r)  RDF(r)

It can be computed easily by:

Slide 40

The wavefunction for an electron in a 
2pz orbital of a hydrogenlike atom is:

We will determine the most probable distance of the electron
from the nucleus, rmp.
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One gets the same result for any 2p orbital because the
Radial portion of the wavefunction does not depend on m.

Therefore:
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RDF1s

RDF2p

RDF3d

r/a0

By the same method, one may calculate rmp for 1s and 3d electrons:

These most probable distances correspond to
predicted radii for the Bohr orbits:
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Probability of r in a certain range

Some Numerical
Integrals

We will again consider an
electron in a 2p orbital, for which:

What is the probability that 0  r  5a0/Z

We will first normalize the RDF

Slide 44

Some Numerical
Integrals

What is the probability that 0  r  5a0/Z

Define: Then:
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What is the probability that 3a0/Z  r < 

Some Numerical
Integrals

One can use the identical method used above to determine
that:
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Calculate <r> for an electron in a 2pz orbital

(same as worked earlier using the complete wavefunction)

Same result as before.
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Calculate the average potential energy for an electron in a 2pz orbital.

Slide 48

for an electron in a 2p orbital

Total Energy:

Note that <V> = 2•E

Calculation of average kinetic energy, <T>

Also:

Signs

<V> negative
<T> positive
<E> negative
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Atomic Units

All of these funny symbols flying around are giving me a headache.
Let’s get rid of some of them.

Let’s redefine
some basic units: me=1      (mass of electron)

e = 1      (charge of electron)

ħ = 1      (angular momentum)

4o = 1 (dielectric permittivity)

Derived Units

Length:

Energy:

Conversions

1 bohr = 0.529 Å

1 h = 2625 kJ/mol

1 h = 27.21 eV
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Hydrogen Atom Schrödinger Equation

SI Units Atomic Units


