SOME POSSIBLY USEFUL INFORMATION:

\[N_A \text{ or } L = 6.022 \times 10^{23} \text{ mol}^{-1} \]
\[h = 6.626 \times 10^{-34} \text{ J s} \]
\[k = 1.38 \times 10^{-23} \text{ J K}^{-1} \]
\[c = 2.998 \times 10^8 \text{ m s}^{-1} \]
\[\text{H atom mass (1 amu or u) } = 1.66 \times 10^{-27} \text{ kg} \]
\[\text{electron mass } = 9.11 \times 10^{-31} \text{ kg} \]
\[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \]

Planck: \[E = hv \]
Schrodinger: \[\hat{\psi} = E\psi \]
de Broglie: \[\lambda = h/\rho \]

\(\hat{x} \) operator is multiply by \(x \)
\(\hat{p} \) operator is \[h/(2\pi) \frac{d}{dx} \]
\(\hat{E}_k \) operator is \[-\frac{\hbar^2}{2m} (\frac{d^2}{dx^2}) \]
\(\hat{V} \) operator is multiply by \(V \)

\[
\sin^2 x = \frac{1 - \cos 2x}{2} \\
\cos^2 x = \frac{1 + \cos 2x}{2}
\]

\[
\int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}} \quad \text{vibrator:} \\
E = (\nu + 1/2)hv \quad \nu = (1/2\pi)\sqrt{\left(k/\mu\right)}
\]

I.P. of one-electron atom proportional to \[Z^2/\mu^2 \]. I.P. of H = 13.6 eV = \[2.18 \times 10^{-18} \text{ J} \].

Rotor: \[J_z^2 = l(l + 1) \frac{\hbar^2}{(4\pi^2)} \]
\[L_z = m_l \frac{\hbar}{(2\pi)} \]
1) 30 points

i) Sketch the shapes of the ground state wavefunction for a harmonic oscillator, and the wavefunction for the next highest energy. Label each curve with the corresponding vibrational quantum numbers.

ii) A diatomic molecule with a reduced mass of 7 u (i.e. 7 amu) has a force constant of 800 N m\(^{-1}\). What is the vibrational frequency in Hz?

iii) What is the energy of a photon whose energy matches the gap between the 3\(^{rd}\) and 4\(^{th}\) vibrational energy levels? Give your answer in cm\(^{-1}\).

[If you have no answer to (ii) you may assume – incorrectly - that \(v = 2 \times 10^{13}\) Hz]

\[
\mu = 7 \times 1.66 \times 10^{-27}\text{kg} = 1.162 \times 10^{-26}\text{kg}, \quad v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} = 4.18 \times 10^{12}\text{Hz},
\]

\[
\Delta E = E_{v=4} - E_{v=2} = 4\frac{1}{2} \nu \frac{h}{2} - 3\frac{1}{2} \nu \frac{h}{2} = \nu \frac{h}{2} \quad \text{(constant gap between neighboring levels)}
\]

\[
\Delta E = \hbar \nu = h \nu \frac{c}{\lambda}, \quad \text{so} \quad \frac{1}{\lambda} = \frac{\Delta E}{h\nu} = \frac{4.18 \times 10^{12}\text{Hz}}{2.998 \times 10^{10}\text{cm}^{-1}} = 1.393 \text{cm}^{-1}.
\]
2) 40 points

i) A hypothetical spherically-symmetrical atomic orbital has the form \(\psi = N (3-r) \exp(-r/2) \). How many nodes do you expect in this wavefunction, and at what value(s) of \(r \)?

ii) At what value(s) of \(r \) is the electron most likely to be found?

iii) Determine the normalization constant \(N \).

iv) Find the average value of \(r \).

\[\psi(r) = \frac{4\pi N^2}{r} \exp(-r/2) \]

\[\psi_{\text{maxima or minima}} \]

\[\frac{d\psi}{dr} = 4\pi N^2 \left[\frac{r^2 (3-r)^2}{e^r} + \left(\frac{2}{e^r} \right) - \frac{r^2}{e^r} \right] \]

\[= 4\pi N^2 e^{-r} \left[-3r^2 (3-r)^2 + 6 - 2r^2 (3-r) \right] \]

\[= 4\pi N^2 e^{-r} \left[-3r^2 (3-r)^2 + 6 - 2r^2 (3-r) \right] \]

\[= 0, 1, 2 \text{ or } 3. \]

\[r = 0 \text{ and } 3 \text{ are minima (from the sketch), so } 0 = 1 \text{ and } 6 \text{ are maxima.} \]

\[p_{\text{maxima}} = \int_0^\infty \psi^2 \, dr = \frac{4\pi N^2}{r} \int_0^\infty \left(r^2 e^{-r} \right) \, dr = 4\pi N^2 \left[\int_0^\infty r^2 e^{-r} \, dr - 6 \int_0^\infty r e^{-r} \, dr + \int_0^\infty e^{-r} \, dr \right] \]

\[= 4\pi N^2 \left[0.5 \right] = 2\pi N^2 \text{ so } N = \frac{1}{\sqrt{2\pi}}. \]

\[\langle r^2 \rangle = \int_0^\infty r^2 \psi^2 \, dr = \int_0^\infty \frac{4\pi N^2}{r} \left(r^2 e^{-r} \right) \, dr \]

\[= \frac{2\pi}{24\pi} \left[9 \int_0^\infty r^2 e^{-r} \, dr - 6 \int_0^\infty r e^{-r} \, dr + \int_0^\infty e^{-r} \, dr \right] \]

\[= \frac{1}{6} \left[0.5 \right] = 5. \]
3) 30 points

i) Write out the electronic structure of a phosphorus atom (Z=15). What is the total spin \(S \) and the spin multiplicity?

ii) If an electron is in an f orbital, what is the magnitude of the orbital angular momentum in terms of \(\hbar \), and list all the allowed values of the z component of the orbital angular momentum?

iii) If a single electron occupies a p orbital, what are all the possible total angular momentum \(j \) values for this one electron? Explain briefly which of these has the lowest energy.

\[
\text{i) } 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^3 \quad \text{How are}\ 3p^- \ \text{arranged in these p orbitals?}
\]

Hund's rule gives \(t = \frac{1}{2} \).

\[
S = \frac{1}{2} + \frac{1}{2} = 1 \quad \text{Spin multiplicity} \quad J = 2, 1, 0, \quad \text{ spin} = 4, 3, 2, 1, 0.
\]

\[
\text{ii) For an f orbital} \quad l = 2, \quad l_z = \frac{1}{4}, \frac{5}{4}, \frac{9}{4}, \frac{13}{4}, \quad \text{so} \quad \left| l_z \right| = \sqrt{2}, \sqrt{2/\pi}, \quad \text{or} \quad 2, \sqrt{2/\pi}.
\]

\[
l_z = ml \quad \frac{1}{4} = -2, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \quad \text{(seven values)}.
\]

\[
\text{iii) Spin can be aligned mostly with or against the orbital angular momentum.}
\]

\[
1 \quad \begin{array}{c}
\downarrow \uparrow \\
S = l, s = \frac{3}{2}
\end{array}
\]

\[
1 \quad \begin{array}{c}
\downarrow \uparrow \\
S = l, s = \frac{1}{2}
\end{array}
\]

magnetic fields aligned
so lower energy

 magnetic fields opposed
- higher energy.