SOME POSSIBLY USEFUL INFORMATION:

N_A or $L = 6.022 \times 10^{23}$ mol$^{-1}$

$h = 6.626 \times 10^{-34}$ J s

$k = 1.38 \times 10^{-23}$ J K$^{-1}$

$c = 2.998 \times 10^8$ m s$^{-1}$

H atom mass = 1.66×10^{-27} kg

electron mass = 9.11×10^{-31} kg

$R = 8.314$ J K$^{-1}$ mol$^{-1}$

Planck: $E = hv$

Schroedinger: $\hat{H}\psi = E\psi$

de Broglie: $\lambda = h/p$

x operator is multiply by x

p operator is $h/(2\pi i) d/dx$

E_k operator is $-h^2/(8\pi^2 m)$ d^2/dx^2

V operator is multiply by V

$\sin^2 \theta = (1 - \cos 2\theta)/2$

$\cos^2 \theta = (1 + \cos 2\theta)/2$
1) **40 points**

a) A particle of mass m is confined by infinite potential barriers to the one-dimensional region of space $x = 0$ to $x = L$, where the potential energy is zero. Its wavefunction is given by

$$\psi(x) = A \sin \left(\frac{n \pi x}{L}\right)$$

where A is a constant. The potential energy is zero for $0 < x < L$.

Verify that this ψ satisfies the Schrödinger equation and find the total energy E of the particle. What is the lowest value E can take?

b) An electron has the wavefunction $\psi = B x^2$ over the range $x = 1$ m to $x = 3$ m, where the potential energy is zero and B is a constant. Elsewhere $\psi = 0$. Find what value of B normalizes the wavefunction.

\[\begin{align*}
\hat{H} &= \hat{E} + \hat{V} = -\frac{\hbar^2}{8m^2} \frac{d^2}{dx^2} \\
\hat{H} \psi &= -\frac{\hbar^2}{8m^2} \frac{d^2}{dx^2} A \sin \left(\frac{n \pi x}{L}\right) = \frac{\hbar^2}{8mL^2} A n^2 \pi^2 \sin \left(\frac{n \pi x}{L}\right) \\
\text{so } \hat{H} \psi &= E \psi \text{ with } E = \frac{\hbar^2}{8mL^2} n^2 \pi^2 \\
\text{Lowest possible } E \text{ is when } n = 1 \text{ i.e. } \frac{\hbar^2}{8mL^2}.
\end{align*} \]

b) Normalization condition is $1 = \int_{\text{all space}} x^2 \psi^2 dx$

\[\begin{align*}
\int_1^3 (Bx^2)^2 dx &= B^2 \int_1^3 x^4 dx \\
&= \frac{B^2}{5} \left[x^5\right]_1^3 = \frac{B^2}{5} (3^5 - 1) = B^2 \cdot \frac{27}{5} \\
\therefore B &= \sqrt{\frac{5}{27}} \approx 0.144
\end{align*} \]
2) 30 points

a) Do the position and linear momentum operators commute? What are the implications for the observables of position and linear momentum?

b) A particle is described by the wavefunction \(\psi = e^{ikx} \). Is this wavefunction an eigenfunction of the momentum operator? What can be learned about the observed momentum for this wavefunction?

a) \[\hat{x} \hat{p} \psi = x \cdot \frac{\hbar}{2\pi i} \frac{d}{dx} \psi \]
\[\hat{p} \hat{x} \psi = \frac{\hbar}{2\pi i} \frac{d}{dx} (x \psi) = \frac{\hbar}{2\pi i} (\psi + x \frac{d}{dx} \psi) \]

Not equal \(\Rightarrow \) do not commute.

This means \(x \) and \(p \) are complementary observables and there is an uncertainty relationship between them, i.e., \(x \) and \(p \) cannot be found together, simultaneously and exactly.

b) \[\hat{p} \psi = \frac{\hbar}{2\pi i} \frac{d}{dx} (e^{ikx}) = \frac{\hbar}{2\pi i} ik e^{ikx} = \frac{\hbar k}{2\pi} e^{ikx} = \frac{\hbar k}{2\pi} \psi \]

so yes, \(\psi \) is an eigenfunction and the observed momentum is the eigenvalue, \(p = \frac{\hbar k}{2\pi} \), exactly.
3) 30 points
A photon of wavelength 200 nm knocks an electron out of a piece of metal whose work function is 150 kJ mol$^{-1}$. Calculate the de Broglie wavelength of this electron.

\[\text{Photon frequency} \quad \nu = \frac{c}{\lambda} = \frac{2.998 \times 10^8 \text{ m s}^{-1}}{200 \times 10^{-9} \text{ m}} = 1.499 \times 10^5 \text{ Hz} \]

\[\text{Photon energy} \quad E = h \nu = 6.626 \times 10^{-34} \text{ Js} \times 1.499 \times 10^5 \text{ Hz} = 9.93 \times 10^{-19} \text{ J} \]

\[\text{Work function} \quad \phi = 150 \text{ kJ mol}^{-1} = \frac{150 \times 10^3 \text{ J mol}^{-1}}{6.022 \times 10^{23} \text{ mol}^{-1}} = 2.49 \times 10^{-19} \text{ J} \]

\[E_k \text{ is the difference} \quad (9.93 - 2.49) \times 10^{-19} \text{ J} = 7.44 \times 10^{-19} \text{ J} \]

\[E_k = \frac{p^2}{2m} \]

\[p = \sqrt{2mE_k} = \sqrt{(2 \times 9.11 \times 10^{-31} \text{ kg} \times 7.44 \times 10^{-19} \text{ J})} \]

\[p = 1.16 \times 10^{-24} \text{ kg m s}^{-1} \]

\[\text{De Broglie wavelength} \quad \lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34} \text{ Js}}{1.16 \times 10^{-24} \text{ kg m s}^{-1}} = 5.69 \times 10^{-10} \text{ m} \]