Your name: Solutions

SOME POSSIBLY USEFUL INFORMATION:

\(N_A \) or \(L = 6.022 \times 10^{23} \) mol\(^{-1} \) \hspace{2cm} \(h = 6.626 \times 10^{-34} \) J s

\(k = 1.38 \times 10^{-23} \) J K\(^{-1} \) \hspace{2cm} \(c = 2.998 \times 10^8 \) m s\(^{-1} \)

H atom mass = \(1.66 \times 10^{-27} \) kg \hspace{2cm} electron mass = \(9.11 \times 10^{-31} \) kg

\(R = 8.314 \) J K\(^{-1} \) mol\(^{-1} \)

Planck: \(E = h \nu \) \hspace{2cm} Schrodinger: \(\hat{H}\psi = E\psi \) \hspace{2cm} de Broglie: \(\lambda = h/\pi \)

Particle in 1-D box: \(\psi_n = (2/a)^{1/2} \sin(n\pi x/a), \) \hspace{2cm} \(E_n = h^2 n^2/(8ma^2) \)

Harmonic oscillator: \(E_v = (\nu + 1/2) h \nu; \) \hspace{2cm} \(\nu = (k/\mu)^{1/2}/(2\pi) \)

Rigid rotor \(|L|^2 = l(l+1) h^2/(4\pi^2) \) \hspace{2cm} \(L_z = m_l h/(2\pi) \) \hspace{2cm} \(E = L^2/(2I) \)

x operator is multiply by x \hspace{2cm} p operator is \(h/(2\pi) \) d/dx

\(E_k \) operator is \(-h^2/(8\pi^2 m) \) d\(^2\)/dx\(^2\) \hspace{2cm} V \) operator is multiply by V

radial distance r operator is multiply by r

IP of 1-electron atom proportional to \(Z^2/n^2 \). IP of H = 13.6 eV = \(2.18 \times 10^{-18} \) J

\(\sin^2 x = (1 - \cos 2x)/2 \) \hspace{2cm} \(\cos^2 x = (1 + \cos 2x)/2 \)

\(\int_0^\infty x^n \exp(-ax) = \frac{n!}{a^{n+1}} \)
1) **30 points**

i) List all possible values of the orbital angular momentum and its z-component for an electron in an f orbital. Leave \hbar and π in your answers.

ii) List all possible values of the spin angular momentum and its z-component for an electron in an f orbital. Leave \hbar and π in your answers.

iii) Sketch the radial distribution function vs distance from the nucleus r for a 3s electron.

\[L^2 = \frac{L(L+1)\hbar^2}{4\pi^2} = \frac{3(4)\hbar^2}{4\pi^2} = \frac{3\hbar^2}{\pi^2} \]

so magnitude $= \sqrt{3} \frac{\hbar}{\pi}$

$m_L = -3, -2, -1, 0, 1, 2, 3$

\[L_z = \frac{m_e \hbar}{2\pi} \]

so $L_z = -\frac{3\hbar}{2\pi}, -\frac{\hbar}{2\pi}, 0, \frac{\hbar}{2\pi}, \frac{3\hbar}{2\pi}$

ii) $S_z = m_s \frac{\hbar}{2\pi}$

$m_s = \pm \frac{1}{2}$

so $S_z = \frac{\hbar}{4\pi}, -\frac{\hbar}{4\pi}$

iii)

![RDF Diagram](image)
2) 20 points
A quantized rigid rotor has a moment of inertia of 1.00×10^{-46} kg m2 and a rotational quantum number l.

a) What is the frequency (Hz) and wavenumber (cm$^{-1}$) of a photon whose energy matches the gap between $l=1$ and $l=2$?

b) What is the lowest possible value of the rotor's total energy, in J?

\[E = \frac{L^2}{2I} = \frac{\ell(\ell+1)\hbar^2}{4\pi^22I} \]

For $\ell = 1$, $\ell(\ell+1) = 2$

$\ell = 2$, $\ell(\ell+1) = 6$

\[E = \frac{\hbar^2}{4\pi^22I} (6-2) = \frac{4 \left(6.626 \times 10^{-34} J_s \right)^2}{4 \pi^2 2 \left(1 \times 10^{-46} \text{ kg m}^2 \right)} \]

\[= 2.22 \times 10^{-22} J = h\nu \]

\[\nu = \frac{2.22 \times 10^{-22} J}{6.626 \times 10^{-34} J_s} = 3.36 \times 10^7 \text{ s}^{-1} \]

b) $\ell = 0$, so

\[E = \frac{0(0+1)\hbar^2}{4\pi^22I} = 0 \]
3) 50 points
A spherically symmetrical orbital in a hypothetical atom is given by
\[\psi = N r^2 \exp(-0.3 r) \]
where \(r \) is the radial distance from the nucleus and \(N \) is the normalization constant.

i) Where are any local maxima in the radial distribution function?

ii) What is the value of \(N \)?

i) RDF is
\[4\pi r^2 \psi^2 = 4\pi r^2 N^2 r^4 e^{-0.6r} = P \]

\[\frac{dP}{dr} = 4\pi N^2 r^6 e^{-0.6r} (-0.6) + 4\pi N^2 6r^5 e^{-0.6r} \]
\[= 4\pi N^2 e^{-0.6r} [-0.6r^6 + 6r^5] \]
\[= 4\pi N^2 e^{-0.6r} r^5 (6 - 0.6r) \]
\[= 0 \quad \text{so} \quad r = \frac{6}{0.6} = 10 \]

ii) \[\int_0^\infty 4\pi r^2 \psi^2 \psi \, dr = 1 \]

\[4\pi N^2 \int_0^\infty r^6 e^{-0.6r} \, dr = 4\pi N^2 \left(\frac{6^!}{0.6^4} \right) = 1 \]

\[\implies N = 1.76 \times 10^{-3} \]