CHEM 1423
Chapters 17
Homework Solutions

TEXTBOOK HOMEWORK

17.29 2 HBr(g) ⇆ H₂(g) + Br₂(g)

\[P_{\text{HBr}} = 0.2 \text{ atm, } P_{\text{H₂}} = 0.01 \text{ atm, } P_{\text{Br₂}} = 0.01 \text{ atm} \]

\[Q = \frac{P_{\text{H₂}} \cdot P_{\text{Br₂}}}{P_{\text{HBr}}} = \frac{(0.01)(0.01)}{(0.2)^2} = 2.5 \times 10^{-3} > K_p \left(4.18 \times 10^{-9} \right) \]

Because \(Q \neq K_p \), the reaction is **not** at equilibrium.

Because \(Q > K_p \), the reaction will move towards the left until \(Q = K_p \)

17.38 2 NO(g) + Cl₂(g) ⇆ 2 NOCl(g) \(K_p = 6.5 \times 10^4 \), \(P_{\text{NO}} = 0.35 \text{ atm, } P_{\text{Cl₂}} = 0.10 \text{ atm} \)

\[P_{\text{NO}} = 0.35 \text{ atm, } P_{\text{Cl₂}} = 0.10 \text{ atm} \]

\[K_p = 6.5 \times 10^4 = \frac{P_{\text{NOCl}}^2}{P_{\text{NO}} \cdot P_{\text{Cl₂}}} = \frac{P_{\text{NOCl}}^2}{(0.35)^2 (0.10)} = \frac{P_{\text{NOCl}}^2}{1.225 \times 10^{-2}} \]

\[P_{\text{NOCl}}^2 = (6.5 \times 10^4) (1.225 \times 10^{-2}) = 796.3 \]

\[P_{\text{NOCl}} = \sqrt{796.3} = 28.2 \text{ atm} \]

17.41 2 H₂S(g) ⇆ 2 H₂(g) + S₂(g) \(K_c = 9.3 \times 10^{-8} \), \([H₂S]_o = 0.45 \text{ mol/3 L} = 0.15 \text{ M} \)

<table>
<thead>
<tr>
<th></th>
<th>H₂S</th>
<th>H₂</th>
<th>S₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-2x</td>
<td>+2x</td>
<td>+x</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>0.15-2x</td>
<td>2x</td>
<td>x</td>
</tr>
</tbody>
</table>

As stated in the problem (see outline), one may assume that very little \(H₂S \) will **decompose** (because \(K_c \) is very small). Therefore, at equilibrium, \([H₂S] = 0.15 - 2x \approx 0.15 \text{ M}\)

\[K_c = 9.3 \times 10^{-8} = \frac{[H₂]^2 [S₂]}{[H₂S]^2} = \frac{(2x)^2 (x)}{(0.15)^2} = 177.8 x^3 \]

\[x^3 = \frac{9.3 \times 10^{-8}}{177.8} = 5.23 \times 10^{-10} \]

\[x = \left(5.23 \times 10^{-10} \right)^{\frac{1}{3}} = 8.06 \times 10^{-4} \text{ M} \]

\([H₂] = 2x = 1.61 \times 10^{-3} \text{ M, } [S₂] = x = 8.06 \times 10^{-4} \text{ M}\)
17.44 \(2 \text{ ICl(g)} \rightleftharpoons \text{ I}_2(g) + \text{ Cl}_2(g) \), \(K_c = 0.110 \), \([\text{ICl}]_0 = 0.50 \text{ mol/5.0 L} = 0.10 \text{ M} \)

<table>
<thead>
<tr>
<th></th>
<th>ICl</th>
<th>I(_2)</th>
<th>Cl(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-2x</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>0.10-2x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Note: Because it is not stated in the problem, you may NOT assume that very little H\(_2\)S will decompose.

\[K_c = 0.110 = \frac{[\text{I}_2][\text{Cl}_2]}{[\text{ICl}]^2} = \frac{(x)(x)}{(0.10-2x)^2} = \frac{x^2}{(0.10-2x)^2} \]

Take square root of both sides

\[\sqrt{0.110} = 0.332 = \frac{x}{0.10-2x} \]

\[0.332(0.10 - 2x) = x \]

\[0.0332 - 0.664x = x \]

\[1.664x = 0.0332 \]

\[x = 0.01995 = 0.020 \]

\[[\text{I}_2] = [\text{Cl}_2] = x = 0.020 \text{ M} \quad [\text{ICl}] = 0.10 - 2x = 0.10 - 2(0.02) = 0.060 \text{ M} \]

17.46 \(4 \text{ NH}_3(g) + 3 \text{ O}_2(g) \rightleftharpoons 2 \text{ N}_2(g) + 6 \text{ H}_2\text{O(g)} \)

\([\text{NH}_3]_o = [\text{O}_2]_o = 0.015 \text{ mol/1.00 L} = 0.015 \text{ M} \), \([\text{N}_2]_{\text{equil}} = 1.96 \times 10^{-3} \text{ M} \)

Let’s make an ICE Table

<table>
<thead>
<tr>
<th></th>
<th>NH(_3)</th>
<th>O(_2)</th>
<th>N(_2)</th>
<th>H(_2)O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.015</td>
<td>0.015</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-4x</td>
<td>-3x</td>
<td>+2x</td>
<td>+6x</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>0.015-4x</td>
<td>0.015-3x</td>
<td>2x</td>
<td>6x</td>
</tr>
</tbody>
</table>

We can determine the value of \(x \) by using the equilibrium concentration, \([\text{N}_2]\).

\([\text{N}_2]_{\text{equil}} = 2x = 1.96 \times 10^{-3} \]

\[x = 9.80 \times 10^{-4} \]

\([\text{H}_2\text{O}] = 6x = 5.88 \times 10^{-3} \]

\([\text{NH}_3] = 0.015-4x = 1.108 \times 10^{-2} \]

\([\text{O}_2] = 0.015-3x = 1.206 \times 10^{-2} \)

\[K_c = \frac{[\text{N}_2]^2[\text{H}_2\text{O}]^6}{[\text{NH}_3]^4[\text{O}_2]^3} = \frac{(1.96 \times 10^{-3})^2(5.88 \times 10^{-3})^6}{(1.108 \times 10^{-2})^4(1.206 \times 10^{-2})^3} = 6.01 \times 10^{-6} \approx 6.0 \times 10^{-6} \]
17.47 \(\text{FeO(s)} + \text{CO(g)} \rightleftharpoons \text{Fe(s)} + \text{CO}_2(g) \quad K_P = 0.403 \)

Note: We can ignore FeO(s) and Fe(s). Only gases need be considered.

\[
\begin{array}{|c|c|c|c|}
\hline
 & \text{FeO(s)} & \text{CO(g)} & \text{Fe(s)} & \text{CO}_2(g) \\
\hline
\text{Initial} & -- & 1.00 \text{ atm} & 0 & 0 \\
\text{Change} & -- & -x & -- & +x \\
\text{Equilibrium} & -- & 1.00-x & -- & x \\
\hline
\end{array}
\]

\[
K_P = 0.403 = \frac{P_{\text{CO}_2}}{P_{\text{CO}}} = \frac{x}{1.00-x} \\
0.403(1.00 - x) = x \\
0.403 - 0.403x = x \\
1.403x = 0.403 \\
x = \frac{0.403}{1.403} = 0.287 \text{ atm} \\
P_{\text{CO}} = 1.00-x = 1.00-0.287 = 0.713 \text{ atm} , \quad P_{\text{CO}_2} = x = 0.287 \text{ atm}
\]

17.56 An increase in volume results in a decrease in pressure. Therefore, the equilibrium will move in the direction which increases the number of moles of gas. However, there is no change in the equilibrium constant.

(a) \(\text{F}_2(g) \rightleftharpoons 2 \text{ F(g)} \): Equil. will move to the right. More F and less F$_2$. No change in K

(b) \(2 \text{ CH}_4(g) \rightleftharpoons \text{ C}_2\text{H}_2(g) + 3 \text{ H}_2(g) \): Equil. will move to the right. More C$_2$H$_2$ and H$_2$ and less CH$_4$. No change in K

17.61 When the temperature is decreased, the equilibrium will move in the exothermic direction. K will change accordingly.

(a) Exothermic reaction \(\dbar H_{\text{rxn}} = -151 \text{ kJ} \). Equilibrium will move to right and K will increase.

(b) Exothermic reaction \(\dbar H_{\text{rxn}} = -451 \text{ kJ} \). Equilibrium will move to right and K will increase.

(c) Exothermic reaction. Equilibrium will move to right and K will increase.

(d) Endothermic reaction. Equilibrium will move to left and K will decrease.