ACID-BASE EQUILIBRIA

Chapter 18 Outline

Text Problems: # 15, 16, 18, 20, 45, 48, 50, 54, 55, 65, 67
+ Supplementary Questions (attached)

Text Sample Problems: The text has a number of excellent sample problems (solved in detail) in each section. I would recommend that you study these problems + the "follow up" problems, which have brief solutions at the end of the chapter.

<table>
<thead>
<tr>
<th>Sect.</th>
<th>Title and Comments</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Acids and Bases in Water</td>
<td>YES</td>
</tr>
<tr>
<td>2.</td>
<td>Autoionization of Water and the pH Scale</td>
<td>YES</td>
</tr>
<tr>
<td>3.</td>
<td>Proton Transfer and the Bronsted-Lowry Acid-Base Definition</td>
<td>YES</td>
</tr>
<tr>
<td>4.</td>
<td>Solving Problems Involving Weak-Acid Equilibria</td>
<td>YES</td>
</tr>
<tr>
<td>5.</td>
<td>Weak Bases and Their Relation to Weak Acids</td>
<td>YES</td>
</tr>
<tr>
<td>6.</td>
<td>Molecular Properties and Acid Strength</td>
<td>NO</td>
</tr>
<tr>
<td>7.</td>
<td>Acid-Base Properties of Salt Solutions</td>
<td>YES</td>
</tr>
<tr>
<td>8.</td>
<td>Electron-Pair Donation and the Lewis Acid-Base Definition</td>
<td>NO</td>
</tr>
</tbody>
</table>
Chapter 18
Supplementary Homework Questions

S1. Which of the following is not a conjugate acid-base pair?
 a. CH₃COOH and CH₃COO⁻
 b. CH₃NH₃⁺ and CH₃NH₂
 c. H₂SO₃ and HSO₄⁻
 d. HPO₄²⁻ and PO₄³⁻
 e. HCOOH and HCOO⁻

S2. Which of the following represents the most acidic solution?
 a. [H⁺] = 0.15 M
 b. [H⁺] = 1.0x10⁻¹⁴ M
 c. pH = 3.6
 d. [OH⁻] = 1.0x10⁻¹³ M
 e. pOH = 13.4

S3. Arrange the solutions in order of increasing acidity:
 I a solution with [H₃O⁺] = 4.2 x 10⁻⁶ M
 II lemonade, pH = 2.65
 III 0.25 M nitric acid
 IV pickle juice, pH = 3.10

 a. I-IV-II-III
 b. II-IV-III-I
 c. III-II-IV-I
 d. IV-I-II-III
 e. III-II-I-IV

S4. Write the acid ionization constant expression for the ionization of the hydrogen sulfate ion, HSO₄⁻, in aqueous solution.

S5. Lactic Acid is a weak acid with $K_a = 1.4x10^{-4}$. Calculate the pH, pOH and percent protonation of a 0.05 M solution of sodium lactate. Also calculate the percent protonation of the lactate.

S6. Aniline is a weak base with $K_b = 4.3x10^{-10}$. Calculate the pH, pOH and percent dissociation (of the Anilinium ion) of a solution of 0.07 M Anilinium Bromide. Also calculate the percent dissociation of the Anilinium ion.
S7. Tellurous Acid, H$_2$TeO$_3$, is a diprotic acid with acid dissociation constants, $K_a^1 = 3.0 \times 10^{-3}$ and $K_a^2 = 2.0 \times 10^{-8}$

 a) Calculate the pH and pOH of a 1.20 M solution of Tellurous Acid (H$_2$TeO$_3$).
 b) Calculate the pH and pOH of a 0.25 M solution of potassium tellurite (Na$_2$TeO$_3$)

S8. The pH of a 0.15 M solution of Morphine (C$_{17}$H$_{19}$O$_3$N) is 10.5. Calculate the Base Equilibrium Constant, K_b, for Morphine.

Answers to the Supplementary Homework Questions are posted on the course web site. Questions about these Problems will be answered in Recitation.