Lecture Information

CHEM 5210.001
SPRING 2016

Lecture:
WF - 11:00 AM to 12:20 PM - Room ENV 391

Instructor: Martin Schwartz
Office: Chem. Bldg.: Rm. 272
Off. Hrs: Mon through Friday - 10:00 AM to 11:00 AM + Anytime

Office Ph.: 565-3542
Home Ph.: 382-1370
E-mail: marty@unt.edu

Web Site:
http://www.chem.unt.edu/~mschwart/chem5210/
or:
http://www.chem.unt.edu/ and navigate (→Faculty→Schwartz→Classes)

I. COURSE MATERIAL

A. Chapter
Title
Approx. Starting Date
(Week of)

1. Introduction and Background To QM
 Jan. 20
2. Quantum Theory
 Jan. 27
3. Particle-in-Box Models
 Feb. 3
4. Rigid-Rotor Models and Angular Momentum Eig.
 Feb. 17
 Mar. 2
6. The Hydrogen Atom
 Mar. 9
7. Multielectron Atoms
 Mar. 30
8. Diatomic Molecules
 Apr. 13
9. *Ab Initio* and Density Functional Methods
 Apr. 20
10. Semiempirical Methods and
 Applications of Symmetry
 Apr. 27

B. Text:
No Required Text: When I've taught CHEM 5210 in the past, students commented that they utilized the PP lectures, homework, old exams to study for tests, and didn't find the textbook particularly useful. Therefore, I do not assign any required text for the course.

I would suggest that as we reach specific material (e.g. Particle in Box, Rigid Rotor, Harmonic Oscillator, etc.), you will find it useful to review the material in the quantum mechanics section of any good undergraduate textbook.
II. HOMEWORK

Homework problems will be assigned for each chapter (attached to the Chapter Outline).

Homework will not be collected. However, you are strongly encouraged to work the homework, since problems and questions on the exams will be based upon homework and examples worked in class.

Solutions to the homework problems are available on the CHEM 5210 Web Site.

III. EXAMS

A. GENERAL

1. There will be three “hourly” exams. Each hourly exam will count 100 points. You will be given ~1.8 hours (10:00 AM - 11:50 AM) to work each exam. The tests will be in a room (to be determined) in the Chemistry Building.

2. There will be a 2+ hour comprehensive final exam. The Final will count 200 points. The test will be in a room (to be determined) in the Chemistry Building.

3. Either the lowest of the three hourly exams OR one-half of the final exam will be dropped prior to computing your average.

4. There will not be any makeup exams. A missed exam will count as your dropped test (excluding a well documented serious illness, requiring hospitalization).

5. If classes are cancelled by the University on the day of a scheduled exam, then the test is automatically scheduled for the next class lecture period.
B. TEST SCHEDULE

<table>
<thead>
<tr>
<th>Exam #</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Friday, February 19</td>
</tr>
<tr>
<td>2</td>
<td>Friday, March 25</td>
</tr>
<tr>
<td>3</td>
<td>Friday, April 22</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Monday, May 9, 10:30 AM - 12:30 PM</td>
</tr>
</tbody>
</table>

We will have the Final Exam in a room (to be determined) in the Chemistry Building. The above time period is the official time. We will arrange extra time for the Final Exam.

IV. COURSE GRADING

A. CALCULATION OF AVERAGE

Your average will be calculated as a percentage of 400 points. The average will be calculated after dropping the lower of either:

a) The lowest of the three hourly exams.
b) One-half of the final exam.

B. GRADING SCALE

A: \(\geq 90\% \) B: \(\geq 75\% \)

V. NOTES

1. By University regulations, a grade of "I" cannot be given as a substitute for a failing grade in a course.

2. ADA Compliance: I am happy to cooperate with the Office of Disability Accommodation to make reasonable accommodations for qualified students with disabilities. If applicable, please present your request, with written verification from the ODA, before the first test.

3. Any student caught cheating on an examination will receive an “F” in the course and be reported to the Dean of Students.